Chondrocytes in articular cartilage can secrete extracellular matrix to maintain cartilage homeostasis. It is well known that articular cartilage chondrocytes are sensitive to mechanical loading and that mechanical stimuli can be translated to biological processes. This study provides deep insight into the impact of mechanical loading on chondrocytes via single-cell RNA sequencing (scRNA-seq). Five cartilage tissue samples from the high-loading region of medial cartilage from the upper tibia (the TL group) and six cartilage tissue samples from the low-loading region of lateral cartilage from the upper tibia (the TN group) were obtained from six donors and subjected to scRNA-seq. TL and TN cartilage tissues from another donor were subjected to immunohistochemical staining. In total, 132,685 cells were analyzed and assigned to 11 cell types. The functions, developmental relationships and interactions of these cell types were determined, and gene transcription data were also evaluated. In addition, differentially expressed genes between the TL and TN groups and their functions were identified. The hub genes for the TL group were identified as GAPDH, FN1, VEGFA, LDHA, SOD1, CTGF, DCN, SERPINE1, ENO1 and CAV1, whereas the hub genes for the TN group included ACTB, CD44, MMP2, COL1A1, COL1A2, SPP1, CTGF, MYC, CCL2, and IGF1. The different enrichment terms indicated that physiological mechanical loading may induce reactive oxygen species accumulation and thus cause ferroptosis in chondrocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-025-05234-x | DOI Listing |
ACS Appl Bio Mater
March 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2025
Department of stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China. Electronic address:
Periodontitis is one of the major oral health issues worldwide, with significant impacts on oral health and patients's quality of life, but current therapies have not achieved optimal regeneration of periodontal tissue. This study developed scaffolds using natural tussah silk fibroin (TSF) cross-linked with regenerated silk fibroin (SF) nanofibers to improve mechanical properties and wet-state stability. Zinc oxide (ZnO) and polydopamine (PDA) composite nanoparticles were loaded into scaffold to impart its antibacterial and photothermal properties to construct a photo-responsive composite scaffold (ZnO/PDA/TSF-SF).
View Article and Find Full Text PDFEchocardiography
March 2025
Department of Physical Therapy, Faculty of Health Science, Kyorin University, Mitaka City, Tokyo, Japan.
Purpose: Central hypovolemia is considered to lead to a compensatory increase in cardiac contractility. From a physiological perspective, left ventricular (LV) twisting motion, which plays an important role in maintaining cardiac output, should be enhanced during central hypovolemia, but previous studies have shown inconsistent findings. Using 3D echocardiography, we tested the hypothesis that the LV twisting and untwisting motion would be enhanced during severe central hypovolemia.
View Article and Find Full Text PDFPLoS One
March 2025
Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound.
View Article and Find Full Text PDFInt J Implant Dent
March 2025
Department of Prosthodontics, Propaedeutics and Dental Materials, Christian-Albrechts University at Kiel, Arnold-Heller-Strasse 16, Kiel, Germany.
Purpose: This study assessed the impact of the buccal bone on hard and soft tissues in submerged and non-submerged immediate implants using a minipig model.
Methods: Sixty-five titanium implants (Camlog Progressive Line) were placed in four minipigs immediately after tooth extraction. All non-submerged (NSM) implants received a mechanically induced buccal bone defect (NSM-BD), whereas the submerged group (SM) was classified as defective (SM-BD) and intact (SM-BI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!