Disulfidptosis, a novel form of disulfide stress-induced cell death involved in tumor progression, hasn't be well defined the function in tumor progression. And the clinical impacts of disulfidptosis-related genes (DRGs) in pancreatic adenocarcinoma (PAAD) remain largely unclear. In this study, we identified two distinct disulfidptosis subtypes and found that multilayer DRG alterations were associated with prognosis and TME infiltration characteristics. A three-gene prognostic signature was constructed to predict prognosis, and its clinical significance was characterized in the TCGA-PAAD cohort. The disulfidptosis signature was significantly correlated with prognosis, molecular subtype, CD8 T-cell infiltration, response to immune checkpoint inhibitors and chemotherapeutic drug sensitivity, and its predictive capability in PAAD patients was validated in multiple cohorts. Meanwhile, two anti-PD-L1 immunotherapy cohorts confirmed that low-risk patients exhibited substantially enhanced clinical response and treatment advantages. Furthermore, the expression patterns of DRGs were validated by quantitative real-time PCR. The expression and prognostic predictive capability of GLUT1 were verified by 87 PAAD patients from our cohort. These findings may help us understand the roles of DRGs in PAAD and the molecular characterization of disulfidptosis subtypes. The disulfidptosis signature could be a promising biomarker for prognosis, molecular subtypes, TME infiltration characteristics and immunotherapy efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12672-025-02053-w | DOI Listing |
Discov Oncol
March 2025
Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, China.
Disulfidptosis, a novel form of disulfide stress-induced cell death involved in tumor progression, hasn't be well defined the function in tumor progression. And the clinical impacts of disulfidptosis-related genes (DRGs) in pancreatic adenocarcinoma (PAAD) remain largely unclear. In this study, we identified two distinct disulfidptosis subtypes and found that multilayer DRG alterations were associated with prognosis and TME infiltration characteristics.
View Article and Find Full Text PDFJ Cell Mol Med
March 2025
Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, China.
Ischaemic cardiomyopathy (IC) predominantly arises from prolonged deprivation of oxygen in the coronary arteries, resulting in compromised cardiac contractility or relaxation. This study investigates the role of disulfidptosis-associated genes (DiGs) in IC. Through the analysis of datasets GSE5406 and GSE57338, we explored the association between DiGs and immune characteristics to identify crucial genes contributing to IC development.
View Article and Find Full Text PDFEur J Med Res
March 2025
Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
Background: This study sought to establish a risk score signature based on disulfidptosis-related genes (DRGs) to predict the prognosis of hepatocellular carcinoma (HCC) patients.
Methods: The expression data of DRGs from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) was analyzed to develop and validate a DRG prognostic signature (DRGPS). In vitro, experiments were conducted to explore DRG expressions and roles in HCC tissues and cell lines.
Sci Rep
March 2025
Department of Hepatobiliary and Pancreatic Surgery, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, 325000, China, No. 252, Baili East Road, Zhejiang.
The intricate nature and varied forms of bladder urothelial carcinoma (BLCA) highlight the need for new indicators to define tumor prognosis. Disulfidptosis, a novel form of cell death, is closely linked to BLCA progression, prognosis, and treatment outcomes. Our current goal is to develop a novel disulfidptosis-related immune prognostic model to enhance BLCA treatment strategies.
View Article and Find Full Text PDFLife Sci
March 2025
Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Key Laboratory of Children development and genetic research, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin 150081, China. Electronic address:
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder, with oxidative stress recognized as a key pathogenic mechanisms. Oxidative stress disrupts intracellular dynamic- thiol/disulfide homeostasis (DTDH), potentially leading to disulfidptosis, a newly identified cell death mechanism. While studies suggest a link between DTDH and ASD, direct evidence implicating disulfidptosis in ASD pathogenesis remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!