An adaptive, continuous substrate feeding strategy based on evolved gas to improve fed-batch ethanol fermentation.

Appl Microbiol Biotechnol

Department of Agricultural, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Canada.

Published: March 2025

Advances in the ethanol fermentation process are essential to improving the performance of bioethanol production. Fed-batch fermentation is a promising approach to increase the final ethanol titer, which benefits the recovery in the bioethanol industry's downstream process. However, the development of feeding strategies, a crucial control variable in the fed-batch approach, is limited. Thus, in the present work, different modes of substrate delivery-fixed feeding, adapted feeding-were investigated in fed-batch cultures of Saccharomyces cerevisiae in a 5-L bioreactor. Evolved gas production, which was positively correlated with glucose consumption, was used to adjust the sugar feed rate in fed-batch fermentations under an adapted feeding strategy. The adapted feeding strategy enhanced ethanol productivity by 21% compared to the fixed feeding strategy, in which the sugar feed rate was stable, and the ethanol titer reached 91 g/L (~ 11.5%, v/v) at the end of fermentation. Moreover, cell biomass accumulation and cell growth rate were significantly improved when using the adapted feeding strategy. The effect of nitrogen availability on the performance of the adapted feeding strategy was further explored using a low-nitrogen content medium. The results showed that, even under low nitrogen feeding conditions (N/C = 0.046:10), the adapted feeding strategy maintained the same ethanol productivity as nitrogen-rich medium feeding. Overall, these results suggest that sugar delivery with low nitrogen content using the adapted feeding strategy could help reduce medium costs and improve the productivity of current facilities in the ethanol industry.Future work will integrate adapted feeding strategies with other fermentation approaches to improve ethanol production. KEY POINTS: • Novel continuous sugar delivery was developed for fed-batch ethanol fermentation. • The adapted feeding strategy improved ethanol productivity by 21%. • The final ethanol concentration reached 91 g/L (11.5%, v/v) with no residual sugar.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-025-13447-9DOI Listing

Publication Analysis

Top Keywords

feeding strategy
36
adapted feeding
32
feeding
14
ethanol fermentation
12
ethanol productivity
12
ethanol
11
strategy
9
adapted
9
evolved gas
8
fed-batch ethanol
8

Similar Publications

System metabolic engineering modification of Saccharomyces cerevisiae to increase SAM production.

Bioresour Bioprocess

March 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China.

S-adenosyl-L-methionine (SAM) is an important compound with significant pharmaceutical and nutraceutical applications. Currently, microbial fermentation is dominant in SAM production, which remains challenging due to its complex biosynthetic pathway and insufficient precursor availability. In this study, a multimodule engineering strategy based on CRISPR/Cas9 was established to improve the SAM productivity of Saccharomyces cerevisiae.

View Article and Find Full Text PDF

An adaptive, continuous substrate feeding strategy based on evolved gas to improve fed-batch ethanol fermentation.

Appl Microbiol Biotechnol

March 2025

Department of Agricultural, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Canada.

Advances in the ethanol fermentation process are essential to improving the performance of bioethanol production. Fed-batch fermentation is a promising approach to increase the final ethanol titer, which benefits the recovery in the bioethanol industry's downstream process. However, the development of feeding strategies, a crucial control variable in the fed-batch approach, is limited.

View Article and Find Full Text PDF

1. This study examined feeding practices that could affect the expression of intestinal calcium transporter gene, tibial mass, eggshell quality and production performance in 25-week-old Hy-Line Brown Laying Hens.2.

View Article and Find Full Text PDF

The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.

View Article and Find Full Text PDF

Close-to-Equilibrium Crystallization for Large-Scale and High-Quality Perovskite Single Crystals.

Adv Mater

March 2025

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.

The growth of large semiconductor crystals is crucial for advancing modern electronics and optoelectronics. While various crystal growth techniques have been developed for lead halide perovskites, a significant challenge remains: as crystal size increases, performance tends to deteriorate dramatically. This study addresses the inherent limitations of perovskite crystal growth by designing a novel strategy for near-equilibrium growth system to maintain optimal conditions throughout the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!