Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication. For instance, metal organic chemical vapor deposition (MOCVD) emerged in the late 1960s as a vital tool to enable production of compound semiconductor and heterojunction devices, giving rise to tremendously important technologies such as solid-state lighting and diode lasers, yet there is no analogous MOCVD process for HPs. Here, using a custom-built two-zone reactor, we report the first MOCVD process for the direct vapor deposition of thick and continuous films of methylammonium lead halide (MAPbX; X = Br, I) from distinct organolead, halide, and amine vapor sources. Mechanistic investigation via kinetic studies and density functional theory (DFT) calculations suggest a multistep reaction mechanism that should be generalizable to a broad set of HP materials. We anticipate that the continued development of generic HP MOCVD processes will unlock compositional, crystallographic, and morphological control complementary to solution methods, enabling the rational design of material properties and pursuit of new applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c15822 | DOI Listing |
J Am Chem Soc
March 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.
Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
While amorphous indium gallium zinc oxide (α-IGZO) thin film transistors (TFTs) are practical alternatives to silicon-based TFTs, their field-effect mobility (∼50 cm/(V s), depending on deposition conditions) remains insufficient to meet the growing demands of high-resolution active-matrix organic light-emitting diode (AMOLED) displays. The need for high-performance oxide TFTs with mobility ≥100 cm/(V s) has become critical to meet the evolving display industry's requirements. This study explored the development of high-mobility hexagonal homologous compound (HC) indium zinc tin oxide (IZTO) TFTs as an alternative to α-IGZO TFTs.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
School of Mechanical Engineering, Chengdu University, Chengdu 610106, China.
Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to grow carbon nanofibers in situ via intercalation chemical vapor deposition (CVD). We discovered that amorphous carbon nanofibers (CNFs) can exfoliate and separate highly conductive graphite nanosheets (GNS) from the interlayers.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
The morphology modulation of target crystals is important for understanding their growth mechanisms and potential applications. Herein, we report a convenient method for modulating the morphology of MoO by controlling different growth temperatures. With an increase in growth temperature, the morphology of MoO changes from a nanoribbon to a nanoflake.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Borophene, a revolutionary two-dimensional (2D) material with exceptional electrical, physical, and chemical properties, holds great promise for high-performance, highly integrated information storage systems. However, its metallic nature and structural instability have significantly limited its practical applications. To address these challenges, hydrogenated borophene has emerged as an ideal alternative, offering enhanced stability and semiconducting properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!