Horseradish peroxidase (HRP) is a metalloenzyme widely used in various biochemical applications but is susceptible to activity loss and instability under suboptimal conditions. In this study, rhamnolipid (RL) was, for the first time, employed as an additive to enhance the catalytic performance of HRP, including in a dual-enzyme cascade system with glucose oxidase (GOx). We carried out catalytic experiments on phenol degradation and showed that protecting HRP from deactivation is critical in maintaining the high catalytic effect in the dual-enzyme cascade. The computational simulation revealed that the selective binding between polyphenolic products with RL clears the side products at the active pocket of HRP, maintaining the accessibility and high catalytic activity of HRP to phenolic substrates. This work discovered the underpinned mechanism in RL-protected enzyme-catalysis, enabling advanced design and widespread application of natural enzymes in organic removal and water remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5c00601 | DOI Listing |
Langmuir
March 2025
Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
Horseradish peroxidase (HRP) is a metalloenzyme widely used in various biochemical applications but is susceptible to activity loss and instability under suboptimal conditions. In this study, rhamnolipid (RL) was, for the first time, employed as an additive to enhance the catalytic performance of HRP, including in a dual-enzyme cascade system with glucose oxidase (GOx). We carried out catalytic experiments on phenol degradation and showed that protecting HRP from deactivation is critical in maintaining the high catalytic effect in the dual-enzyme cascade.
View Article and Find Full Text PDFAnal Chem
March 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
Antibiotic contamination has been a significant concern in environmental monitoring. Nanozyme-based colorimetric sensors can provide valuable support for in-field detection. However, the development of sensing elements capable of identifying an entire class of specific antibiotics using a single material poses a considerable challenge.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2025
Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
Scaffold proteins play immense roles in bringing enzymes together to enhance their properties. However, the direct fusion of scaffold with bulky guest enzymes may disrupt the assembly process or diminish catalytic efficiency. Most self-assembling protein scaffolds are engineered to form structures beforehand, and then carry guest proteins via different conjugation strategies in vitro.
View Article and Find Full Text PDFPlant Physiol Biochem
April 2025
Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China. Electronic address:
The high-value carotenoid astaxanthin is biosynthesized through a dual-enzyme-catalyzed cascade and is getting increased attention for engineered biosynthesis in plants. When developing astaxanthin-producing tobacco by expressing 2A-peptide-linked CBFD (carotenoid β-ring-4-dehydrogenase) and HBFD (carotenoid 4-hydroxy-β-ring-4-dehydrogenase) from Adonis aestivalis, this work discovered an in-enzyme splicing site at the N-terminus of HBFD that has potentials for multiple protein expression in plant using monocistronic cassette. Based on this finding, we generated astaxanthin-producing tobacco plants expressing a directly fused protein of CBFD and HBFD with a monocistronic cassette.
View Article and Find Full Text PDFAMB Express
February 2025
Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
D-tagatose, a low-calorie rare sugar, has significant potential in food, medicine, cosmetics, and other industries owing to its high application value and market potential. In this study, Escherichia coli BL21 was used as the starting strain to express the β-galactosidase (β-Gal) gene-BgaB-derived from Bacillus stearothermophilus and the L-arabinose isomerase (L-AI) gene-araA-derived from Thermus sp., yielding the genetically engineered strains E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!