Monoliths are versatile materials with diverse applications, and their performance can be enhanced through modifications, including the use of metal-organic frameworks (MOFs). Modified monoliths improve separation and analytical processes in various fields, with different modification methods offering distinct benefits and challenges. Directly adding MOF crystals to the polymerization mixture is straightforward and time effective, but it often results in poor dispersion and compositional heterogeneity, which compromises consistency and reproducibility, particularly in bioanalytical applications. Although layer-by-layer (LbL) development or post-synthesis functionalization provides greater control over surface coverage and layer thickness, improving selectivity, it is challenging and complicated, making it less appropriate for scalable or high-throughput applications. Despite these challenges, MOFs' capabilities are enhanced by their incorporation into monolithic structures, which provide better performance, efficiency, and selectivity. These hybrid materials have a lot of potential for use in pharmaceutical development, environmental monitoring, and biomolecule enrichment. However, concerns like material heterogeneity, reproducibility, and scalability limit their practical application in bioanalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-025-05822-2 | DOI Listing |
Sci Adv
March 2025
Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.
Polymer blend films exhibit unique properties and have applications in various fields. However, understanding their nanoscale structures and polymer component distributions remains a challenge. To address this limitation, we have developed a super-resolution fluorescence microscopy-based technique called oxygen-excluded nanoimaging.
View Article and Find Full Text PDFSci Adv
March 2025
School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China.
Intrabronchial delivery of therapeutic agents is critical to the treatment of respiratory diseases. Targeted delivery is demanded because of the off-target accumulation of drugs in normal lung tissues caused by inhalation and the limited motion dexterity of clinical bronchoscopes in tortuous bronchial trees. Herein, we developed microrobotic swarms consisting of magnetic hydrogel microparticles to achieve intrabronchial targeted delivery.
View Article and Find Full Text PDFTissue Eng Regen Med
March 2025
Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).
Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.
Oral Maxillofac Surg
March 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Bone defects, particularly in the mandible, pose significant clinical challenges due to the limited regenerative capacity. Effective bone tissue engineering requires biomaterials that promote both osteogenesis and angiogenesis. This study developed an optimized collagen-nano hydroxyapatite scaffold loaded with dexamethasone and stem cells to enhance bone regeneration.
View Article and Find Full Text PDFEnviron Geochem Health
March 2025
Institute of Soil Fertilizer and Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China.
Microplastics (MPs), as a global environmental issue, have unclear impacts on agricultural ecosystems. Cotton, as a major agricultural crop in Xinjiang, requires plastic film covering to ensure its yield. The widespread use of plastic film (commonly made of polyethylene) in cotton cultivation has led to significant concerns about microplastic pollution in cotton fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!