Cost-effective sewage-powered microbial fuel cells with nitrogen-doped cobalt carbon nanofiber cathodes and biomass-derived graphitized anodes.

Bioprocess Biosyst Eng

Department of Mechanical Engineering, College of Engineering, Qassim University, 51452, Buraydah, Saudi Arabia.

Published: March 2025

This study presents the design and performance of microbial fuel cells (MFCs) utilizing sewage water as a renewable source for electricity generation. The proposed MFCs employ an air-cathode, single-chamber configuration that harnesses atmospheric oxygen as the electron acceptor, eliminating the need for consumable electron acceptor chemicals. Unlike traditional systems, no external microorganisms are introduced; instead, indigenous microbial communities present in sewage are utilized as efficient biocatalysts. The anode is constructed from graphitized corncob, a biomass-derived material that surpasses conventional anodes such as carbon cloth and carbon paper, achieving power densities of 450 ± 15 mW/m, outperforming 120 ± 7 and 105 ± 5 mW/m of conventional anodes. For the cathode, N-doped and Co-incorporated carbon nanofibers (CNFs) are employed, representing a cost-effective alternative to precious metal-based catalysts. This cathode material demonstrates superior electrochemical performance, producing a power density of 750 ± 17 mW/m, a notable improvement over the Pt/C cathode. Optimization studies identified 5 wt% CNFs as the ideal loading for the cathode. These findings underscore the viability of this MFC configuration in harnessing sewage water for sustainable electricity generation while reducing costs and reliance on precious metals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-025-03134-4DOI Listing

Publication Analysis

Top Keywords

microbial fuel
8
fuel cells
8
sewage water
8
electricity generation
8
electron acceptor
8
conventional anodes
8
cost-effective sewage-powered
4
sewage-powered microbial
4
cells nitrogen-doped
4
nitrogen-doped cobalt
4

Similar Publications

This study presents the design and performance of microbial fuel cells (MFCs) utilizing sewage water as a renewable source for electricity generation. The proposed MFCs employ an air-cathode, single-chamber configuration that harnesses atmospheric oxygen as the electron acceptor, eliminating the need for consumable electron acceptor chemicals. Unlike traditional systems, no external microorganisms are introduced; instead, indigenous microbial communities present in sewage are utilized as efficient biocatalysts.

View Article and Find Full Text PDF

Microbial Electrochemical Technology (MET) offers a promising avenue for CO utilization by leveraging the ability of chemolithotrophic microorganisms to use inorganic carbon in biosynthetic processes. By harnessing the power of electroactive bacteria, METs can facilitate the conversion of inorganic carbon into organic compounds. Therefore, this work combines biosurfactant production at the anode and PHB production at the cathode of Microbial Fuel Cells (MFCs), while testing the efficiency of Microbial Electrosynthesis Cells (MECs), and traditional culture in liquid media.

View Article and Find Full Text PDF

There is a demand and widespread interest in evaluating microbial community structures and metabolic processes in hydrocarbon environments. The current work aims to detect microbial subgroups (phenotypic subsets) and their metabolic processes, such as substrate specificity and expression of niche-associated genes. In this study, we were able to discriminate different cell types in real time from a complex sample matrix to allow the detection of live, dead, and injured cell populations in jet fuels.

View Article and Find Full Text PDF

Microbial fuel cell (MFC) can convert the chemical energy of organic matter in wastewater into electrical energy with high degradation efficiency. In this study, a type of specialized microorganism, Pseudomonas aeruginosa, was screened and added to an MFC to promote the degradation of wastewater generated during the production of cytidine acid while improving the performance of the MFC. The MFC achieved a maximum voltage of 57.

View Article and Find Full Text PDF

Au nanoparticles-composite TiO nanowires (NWs) modified carbon paper (CP) anode was synthesized via the hydrothermal method. Field emission scanning electron microscopy (FESEM) images demonstrate that the modified nanocomposite electrode features a rough and bumpy surface structure. The electrochemical activities of TiO-Au/CP and the control electrodes (TiO-NWs/CP, Au/CP, CP) for microbial fuel cell (MFC) are investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!