A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural Features of the Thymol-Carvacrol Equimolar Mixture: X-Ray Scattering and Molecular Dynamics. | LitMetric

We present a structural characterization of a low-transition-temperature mixture (LTTM), consisting of thymol and carvacrol, at an equimolar ratio. Carvacrol and thymol are natural regioisomers of terpenes. When combined at an equimolar ratio, they form a liquid mixture at room temperature, with supercooling capability and glass transition at ca. 210 K. Using small- and wide-angle X-ray scattering and molecular dynamics, we describe the structural complexity within this system. X-ray scattering reveals a low-Q peak at around 0.6 Å, indicating the existence of mesoscale structural heterogeneities, likely related to the segregation of polar moieties engaged in hydrogen bond (HB) interactions within an aromatic, apolar matrix. These polar interactions are predominantly a result of HBs involving thymol as the HB donor species. The liquid structure is also driven by O-H···π interactions, prevalently due to the ability of the carvacrol π-site to engage in this type of weak interaction as a HB acceptor. Besides, dispersive interactions affect the local arrangement of molecules, with a propensity of carvacrol rings to orient their first neighbors with a perpendicular orientation, while thymol tends to induce a closer approach of other thymol molecules with a preferential parallel alignment. Overall, we observed a complex structural arrangement driven by the interplay of both conventional and weak hydrogen bond interactions, with the aromatic nature of the compounds playing a pivotal role in shaping the system's architecture. Carvacrol and thymol, despite being very similar compounds, are characterized by distinctly different behavior in terms of the interactions they engage in with their neighbors, likely due to the different steric hindrance experienced by their hydroxyl groups, which are close to either a small methyl or a bulky isopropyl group, respectively. Such observations can provide useful hints to develop new solvents with tailored properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c07674DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
12
scattering molecular
8
molecular dynamics
8
equimolar ratio
8
carvacrol thymol
8
hydrogen bond
8
bond interactions
8
interactions aromatic
8
thymol
6
interactions
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!