To achieve an intimate contact between neuronal cells and the electrode in non-invasive platforms intended for neurological research, in this study, we fabricated a raised-type Au multi-electrode array (MEA) by employing nanoscale-thick indium-tin oxide (ITO; 50 nm) as a track layer and plasma-enhanced atomic layer-deposited (PEALD) AlO (30-60 nm) and HfO (20 nm) as passivation layers. The PEALD AlO-passivated Au MEA was subsequently modified with electrodeposited AuPt nanoparticles (NPs) and IrO to demonstrate the passivation capability and chemical resistance of AlO to Au-, Pt-, and IrO NP-containing electrolytes. AlO-passivated and IrO/AuPt-modified MEAs could resolve optogenetically activated spikes and spontaneous activities with a root-mean-square noise level of 2.8 ± 0.3 μV generated by the primarily cultured hippocampal neurons transfected with viral vectors. PEALD AlO exhibited a poor resistance to the Ag leaching environment (concentrated nitric acid maintained at 70 °C); therefore, a nanoporous Au (NPG) structure could not be implemented on the Au MEA passivated with AlO. By depositing a 20 nm-thick HfO over a 40 nm-thick AlO layer, the NPG structure could be implemented on the Au MEA, confirming the chemical resistance of HfO to the Ag leaching environment. The nontoxicity of AlO and HfO was confirmed by the successful primary culture of dissociated hippocampal neurons and electrophysiological studies performed using a hippocampal slice. Considering the advances in ALD technology and the vast number of metal oxides, these results extend the application of ALD metal oxides from water barriers for biomedical implants to passivation layers for MEAs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr05179cDOI Listing

Publication Analysis

Top Keywords

metal oxides
12
plasma-enhanced atomic
8
atomic layer-deposited
8
peald alo
8
passivation layers
8
chemical resistance
8
hippocampal neurons
8
leaching environment
8
npg structure
8
structure implemented
8

Similar Publications

The links between soil and water pollution and cardiovascular disease.

Atherosclerosis

March 2025

University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.

Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.

View Article and Find Full Text PDF

Programmable 2H-MoTe FGFET-Based CMOS Array.

Nano Lett

March 2025

State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

A programmable 2H-MoTe floating-gate field-effect transistor (FGFET)-based complementary metal oxide semiconductor (CMOS) array has been fabricated on the grown substrate. Coplanar grown metallic 1T'-MoTe serves as the source and drain electrodes. The conductive type of the 2H-MoTe channel is manipulated by a top-gate engineering method.

View Article and Find Full Text PDF

The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".

View Article and Find Full Text PDF

Mass spectrometric monitoring of redox transformation and arylation of tryptophan.

Anal Chim Acta

May 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:

Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.

View Article and Find Full Text PDF

Pre-enrichment-free electrochemical detection of lead ions using functionalized tungsten oxide: Integration of surface functionalization and redox cycling mechanisms.

Talanta

March 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:

Methods for electrochemical detection of heavy metal ions have garnered widespread attention due to their high sensitivity, ease of operation, low cost, and suitability for on-site detection. However, these methods typically require a pre-enrichment step to improve the detection limit and sensitivity, which increases operational complexity and introduces potential errors. In this study, tungsten oxide electrodes with various functional groups were prepared by electrodeposition and high-temperature annealing, utilizing the amphoteric properties of l-alanine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!