Introduction: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is a highly pathogenic, drug-resistant, and transmissible "superbug" that causes infections in hospitals and communities. Because of the lack of effective antimicrobial treatment options, morbidity and mortality from CR-hvKP infections have increased dramatically, and outbreaks and the rapid spread of CR-hvKP in hospitals have become a major global public health challenge.

Methods: The mechanisms of molecular evolution in CR-hvKP include the acquisition of a hypervirulent plasmid encoding a virulence gene by carbapenemase-producing K pneumoniae, the horizontal transfer of plasmids carrying carbapenem resistance genes to hvKP, and the acquisition of fusion plasmids carrying both carbapenem resistance genes and hypervirulent genes by classic K pneumoniae. In addition, hvKP can develop a resistance phenotype under antibiotic pressure.

Results: CR-hvKP arises through plasmid-mediated convergence of resistance genes and virulence factors. Its multidrug resistance and lethal pathogenicity fuel hospital outbreaks, requiring urgent action to block plasmid transmission and strengthen surveillance to contain the spread of this evolving superbug.

Discussion: In this article, we have summarized the carbapenemase resistance mechanism, evolution mechanism, virulence factors, and epidemiology of CR-hvKP. Our aim was to elucidate the molecular evolutionary mechanism of CR-hvKP and provide a reference for curbing the spread of CR-hvKP.

Download full-text PDF

Source
http://dx.doi.org/10.1093/labmed/lmae110DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
molecular evolution
8
carbapenem-resistant hypervirulent
8
hypervirulent klebsiella
8
klebsiella pneumoniae
8
cr-hvkp
8
spread cr-hvkp
8
plasmids carrying
8
carrying carbapenem
8
carbapenem resistance
8

Similar Publications

Novel treatment options are needed for the gastric pathogen due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on growth, viability, antibiotic resistance, motility and gene expression using clinical isolates.

View Article and Find Full Text PDF

Background: Cultivated strawberry (Fragaria xananassa Duch.), an allo-octoploid species arising from at least 3 diploid progenitors, poses a challenge for genomic analysis due to its high levels of heterozygosity and the complex nature of its polyploid genome.

Results: This study developed the complete haplotype-phased genome sequence from a short-day strawberry, 'Florida Brilliance' without parental data, assembling 56 chromosomes from telomere to telomere.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is among the most common autoimmune disorders and is characterized by inflammation and degeneration affecting the central nervous system. Glatiramer acetate (GA) is an immunomodulatory drug utilized for treating relapsing-remitting MS. However, a considerable number of patients do not exhibit an appropriate response to this drug.

View Article and Find Full Text PDF

Carbapenem-resistant and virulence plasmid-harboring Klebsiella pneumoniae (pVir-CRKP) has emerged and spread globally, yet clinical investigations from the United States remain limited. We conducted a genomic analysis of 884 unique carbapenem-resistant K. pneumoniae isolates from a multicenter US cohort and identified 6 pVir-CRKP isolates, including 2 sequence type (ST) 23, 2 ST893, and 2 ST11 isolates.

View Article and Find Full Text PDF

Impacts of Naphthenic Acids (NAs) Exposure on Soil Bacterial Community and Antibiotic Resistance Genes (ARGs) Dissemination.

Curr Microbiol

March 2025

Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China.

Naphthenic acids (NAs) are indigenous and complex components in petroleum. In the context of increasing global energy demand, the increasing extraction of fossil resources leads to increased environmental release of NAs, resulting in various environmental risks. However, the impact of NAs exposure on soil microorganisms remains still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!