Compression strongly degrades the electrical conductivity of the liquid-metal-based circuits because the liquid state is prone to be squashed. Here, a new compressible and stretchable biphasic liquid-solid self-healing circuit is proposed by filling GalnSn-BilnSn biphasic metal into micropillar-embedded channels. The underlying BilnSn solid alloy layer serves as a compression resistance layer, while the upper GalnSn liquid metal layer enables the real-time filling of the cracks in the solid layer under large deformations, resulting in autonomous self-healing and maintenance of conductivity under both stretching and compression. The embedded micropillars further improved the compression durability by providing additional mechanical support. The synergistic effect between the biphasic materials and embedded micropillar enables the designed stretchable conductor to show stable performance (R/R<10) under pressure of 38.2 MPa (≈389.5 Kgf cm) and cyclic pressure of 15.8 MPa over 7000 cycles (R/R<0.48%) without compromising the stretchability, whereas the liquid metal-based conductor can only endure pressure up to 2.5 MPa (25.49 Kgf cm). The stretchable antenna and hybrid circuits fabricated using the designed biphasic metal conductor showed enhanced compression durability. The structure-confined filling strategy enabled high-resolution and scalable manufacturing. Overall, robust stability under compression significantly expands the range of possible applications of liquid-metal-based conductors in soft electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202420469 | DOI Listing |
Adv Mater
March 2025
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
Compression strongly degrades the electrical conductivity of the liquid-metal-based circuits because the liquid state is prone to be squashed. Here, a new compressible and stretchable biphasic liquid-solid self-healing circuit is proposed by filling GalnSn-BilnSn biphasic metal into micropillar-embedded channels. The underlying BilnSn solid alloy layer serves as a compression resistance layer, while the upper GalnSn liquid metal layer enables the real-time filling of the cracks in the solid layer under large deformations, resulting in autonomous self-healing and maintenance of conductivity under both stretching and compression.
View Article and Find Full Text PDFNano Lett
October 2024
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, PR China.
Alloy-type anodes used in magnesium ion batteries (MIBs) have garnered significant attention in light of their substantial theoretical specific capacities and possible matchability with conventional electrolytes. However, the major challenges for alloy-type anodes are the sluggish transport kinetics as well as severe volume variations during the discharge/charge processes. Herein, we present a strategy for phase-structure modulation to fabricate a self-supporting In-Bi film through straightforward magnetron sputtering.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China; College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China. Electronic address:
Chitin oligosaccharides (CTOS) possess potential applications in food, medicine, and agriculture. However, lower mass transfer and catalytic efficiency are the main kinetic limitations for the production of CTOS from shrimp shell waste (SSW) and crystalline chitin. Chemical or physical methods are usually used for pretreatment to improve chitinase hydrolysis efficiency, but this is not eco-friendly and cost-effective.
View Article and Find Full Text PDFAltern Ther Health Med
October 2024
Context: Early intervention and treatment are key measures for tuberculosis (TB) prevention and control, making early, rapid, and accurate diagnostic methods crucial. The Liquid-solid (Biphasic) rapid cultures is a novel tool for the differential diagnosis of tuberculosis.
Objective: The study intended to evaluate the value of the biphasic cultures by comparing it to the acid-fast staining and liquid cultures, which have been the traditional gold-standard technology, to determine its value in the diagnosis of TB.
Small
June 2024
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China.
Structural regulation is of primary importance in structure-property/application studies of dealloyed nanoporous metals. Three aspects are mainly considered to affect the microstructure of nanoporous metals: design of precursor alloy, choosing of dealloying parameter, and annealing treatment. Herein, through the combination of the above three strategies, the regulation of structure, composition and phase in nanoporous metals are simultaneously achieved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!