UCNPs@PVP-Hemin-GOx@CaCO Nanoplatform for Ferroptosis Self-Amplification Combined with Calcium Overload.

Adv Healthc Mater

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.

Published: March 2025

Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis. The Hemin loaded in UPHGC NPs exhibits peroxidase (POD) activity, which can react with HO to produce ·OH (CDT) and generate the maximum amount of ·O (PDT) under UV excitation from upconversion materials. Hemin can also consume glutathione (GSH), downregulate glutathione peroxidase 4 (GPX4), and combine with PDT/CDT to induce lipid peroxidation (LPO), leading to ferroptosis. In addition, Glucose oxidase (GOx) provides sufficient HO for the ·OH production, amplifying ROS generation to further enhance ferroptosis. The gluconic acid produced by GOx during the ST process synergizes with the TME's acidic conditions to promote Ca release, induce intracellular calcium overload, enhance oxidative stress, lead to mitochondrial dysfunction, and ultimately kill tumor cells through mitochondrial damage. Furthermore, the externally mineralized calcium carbonate can prevent premature drug release in normal tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202404215DOI Listing

Publication Analysis

Top Keywords

uphgc nps
12
calcium overload
8
ucnps@pvp-hemin-gox@caco nanoplatform
4
ferroptosis
4
nanoplatform ferroptosis
4
ferroptosis self-amplification
4
self-amplification combined
4
combined calcium
4
overload complexity
4
tumor
4

Similar Publications

UCNPs@PVP-Hemin-GOx@CaCO Nanoplatform for Ferroptosis Self-Amplification Combined with Calcium Overload.

Adv Healthc Mater

March 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.

Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!