The physics of defect chemistry and the chemistry of defect physics.

Phys Chem Chem Phys

Technical University of Darmstadt, Electronic Structure of Materials, Darmstadt, Germany.

Published: March 2025

Defect chemistry is the classical approach to evaluate point-defect concentrations in solids depending on the chemical activity of the ( - 1) of constituents by evaluating the mass action laws of a number of defect reactions conserving species, lattice sites, and charge. In an alternative approach, formation energies of individual defects can be calculated to determine the dependence on the Fermi level and on the chemical potentials of the reservoirs. This contribution provides the quantitative relationship between the two approaches, offering the opportunity to compare calculated defect formation energies with experimentally determined quantities. As an example, the application of the two approaches to the comparison of electronic and ionic compensation of doping and the influence of the band edge energies on it is given. This example demonstrates that the Gibbs energy of reduction and oxidation are essentially aligning the energy axis of ionic defects relative to that of electronic defects. In conjunction with the dependence of the valence band maximum and conduction band minimum energies on material composition, this offers the opportunity to tune the preference for electronic, ionic or mixed compensation of doping by two independent quantities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp04363dDOI Listing

Publication Analysis

Top Keywords

physics defect
8
defect chemistry
8
formation energies
8
electronic ionic
8
compensation doping
8
chemistry chemistry
4
defect
4
chemistry defect
4
defect physics
4
chemistry classical
4

Similar Publications

Topologically reconfigurable nematic emulsions.

Proc Natl Acad Sci U S A

March 2025

School of Physics, University of Hyderabad, Hyderabad 500046, India.

In emulsions of multicomponent fluids, the dispersed phase forms tiny droplets in the continuous phase. In situ control and manipulation to achieve diversity in emulsion droplets for emerging applications is challenging. In a liquid crystal-based emulsion, the surface anchoring of the molecules at the isotropic fluid-liquid crystal interface introduces elastic distortions that result in anisotropic interparticle interactions, similar to electrostatic interactions between multipoles, which also lends a naming analogy as elastic dipoles, quadrupoles, and higher.

View Article and Find Full Text PDF

High-performance radiation-resistant lubricating materials (RRLMs) with nanostructures hold great promise for enhancing the irradiation tolerance because of their sinking effect of boundaries on defects. Despite recent advances, challenges remain in finding a nanostructure that exhibits both superior irradiation tolerance and excellent lubricant properties. Unlike traditional nanostructured composite materials that required complex predesign, herein, a MoS nanocrystals (NCs)/amorphous dual phase in subirradiation saturation (SIS) state was spontaneously formed during irradiation, exhibiting high irradiation resistance under the synergistic effect of "defect traps" by interfaces and edge dislocation.

View Article and Find Full Text PDF

The presence of defects can significantly improve catalytic activity and stability, as they influence the binding of the reactants, intermediates, and products to the catalyst. Controlling defects in the structures of nanocrystal catalysts is synthetically challenging. In this study, we demonstrate the ability to control the growth of Ir nanocrystals, enabling the tuning of both structural and surface defects.

View Article and Find Full Text PDF

The physics of defect chemistry and the chemistry of defect physics.

Phys Chem Chem Phys

March 2025

Technical University of Darmstadt, Electronic Structure of Materials, Darmstadt, Germany.

Defect chemistry is the classical approach to evaluate point-defect concentrations in solids depending on the chemical activity of the ( - 1) of constituents by evaluating the mass action laws of a number of defect reactions conserving species, lattice sites, and charge. In an alternative approach, formation energies of individual defects can be calculated to determine the dependence on the Fermi level and on the chemical potentials of the reservoirs. This contribution provides the quantitative relationship between the two approaches, offering the opportunity to compare calculated defect formation energies with experimentally determined quantities.

View Article and Find Full Text PDF

Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!