Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
P2-type NaNiMnO (NNMO) as cathode material for sodium-ion batteries (SIBs) largely suffers from continuous accumulation of local stress caused by destructive structural evolution and irreversible oxygen loss upon cycling, leading to rapid capacity degradation. Herein, a strategy of negative enthalpy doping (NED), wherein transition metal (TM) sites are substituted with 0.01 mol each Sn, Sb, Cu, Ti, Mg, and Zn to increase the stability of the TM layers, is proposed. The robust structure of NED-NNMO significantly suppresses the P2 to O2 phase transition and improves the Na kinetics upon long-term cycling. Consequently, the NED-NNMO exhibits much smoothened voltage platforms and improved oxygen redox reversibility, thus considerably extended lifetime as compared with the pristine NNMO sample. The NED-NNMO delivers a high capacity of 138.9 mAh g with an operation voltage of 3.51 V under 0.1 C and prominent capacity retention of 94.6% after 100 cycles under 1 C, and 90.0% over 3000 cycles under ultra-high rate of 30 C, which is among the best over previous reports. Moreover, an ampere-hour scale pouch cell based on the NED-NNMO demonstrates an energy density of 139 Wh kg. This work sheds light on a route of negative enthalpy doping to design high-performance sodium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202408012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!