Nanovaccines hold significant promise for the prevention and treatment of infectious diseases. However, the efficacy of many nanovaccines is often limited by inadequate stimulation of both innate and adaptive immune responses. Herein, we explore a rational vaccine strategy aimed at modulating innate cell microenvironments within lymph nodes (LNs) to enhance the generation of effective immune responses. Inspired by the structure and natural infection process of viruses, we developed a versatile antigen and adjuvant co-delivery platform, termed virus-mimetic vaccines (VMVs). Specifically, polyarginine-tagged antigens were noncovalently assembled onto nucleic acid nanogels containing cytosine-phosphate-guanine oligodeoxynucleotide via a salt-bridge zipper mechanism, which can activate Toll-like receptor 9. Upon intramuscular immunization, VMVs effectively drained into the LNs, recruiting and activating multiple innate cells, including CD8+ dendritic cells (DCs), CD103+ DCs, macrophages, plasmacytoid DCs, and neutrophils. This activation modulates the innate cell microenvironments and relocates antigen-presenting cells within LNs, optimizing adaptive immune responses. VMVs induced a robust antigen-specific immune response, characterized by high levels of neutralizing antibodies, augmented memory T cell activity, and enhanced development of germinal center B cells. Together, our findings demonstrate that dynamic modulation of innate cell microenvironments by VMVs leads to optimized generation of both humoral and cellular immunity against infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202503845DOI Listing

Publication Analysis

Top Keywords

innate cell
16
cell microenvironments
16
immune responses
12
modulation innate
8
microenvironments lymph
8
lymph nodes
8
infectious diseases
8
adaptive immune
8
innate
6
cell
5

Similar Publications

Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells.

View Article and Find Full Text PDF

Genetic evidence for the suppressive role of zebrafish vhl targeting mavs in antiviral innate immunity during RNA virus infection.

J Immunol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.

The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation.

View Article and Find Full Text PDF

Teleost IgM+ plasma-like cells: beyond antibody secretion.

J Immunol

January 2025

Biotechnology Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

Upon antigen encounter, B cells start a differentiation process toward antibody-secreting cells (ASCs), initially plasmablasts, and eventually long-lived plasma cells. All these ASCs specialize in secreting important amounts of antibodies and usually lose other functionalities of naïve B cells. This differentiation process is scarcely characterized in teleost fish, in which B cells have been shown to share many functional and phenotypic characteristics of mammalian B1 innate subsets.

View Article and Find Full Text PDF

Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation.

View Article and Find Full Text PDF

A fundamental dichotomy in lymphocytes separates adaptive T and B lymphocytes, with clonally expressed antigen receptors, from innate lymphocytes, which carry out more rapid responses. Some T cell populations, however, are intermediates between these 2 poles, with the capacity to respond rapidly through T cell receptor activation or by cytokine stimulation. Here, using publicly available datasets, we constructed linear mixed models that not only define a gradient of innate gene expression in common for mouse innate-like T cells, but also are applicable to other mouse T lymphoid populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!