Emission Enhancement of ZnO Thin Films in Ultraviolet Wavelength Region Using Au Nano-Hemisphere on Al Mirror Structures.

Nanomaterials (Basel)

Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan.

Published: March 2025

Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an AlO thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) wavelength range below 400 nm and another in the visible range between 600 and 700 nm. This NHoM structure can be fabricated through a straightforward process involving deposition, sputtering, and annealing, enabling rapid, large-area formation. By adjusting the thickness of the AlO spacer layer in the NHoM structure, we precisely controlled the localized surface plasmon resonance (LSPR) wavelength, spanning a wide range from the UV to the visible spectrum. Through this tuning, we enhanced the band-edge UV emission of the ZnO thin film by a factor of 35. Temperature-dependent measurements of emission intensity revealed that the NHoM structure increased the internal quantum efficiency (IQE) of the ZnO thin film from 8% to 19%. The heterometallic NHoM structure proposed in this study enables wide-ranging control of SPR wavelengths and demonstrates significant potential for applications in enhancing luminescence in the deep ultraviolet (DUV) region, where luminescence efficiency is typically low.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15050400DOI Listing

Publication Analysis

Top Keywords

nhom structure
20
zno thin
12
thin film
12
ultraviolet wavelength
8
surface plasmon
8
plasmon resonance
8
nhom
5
structure
5
emission enhancement
4
enhancement zno
4

Similar Publications

Emission Enhancement of ZnO Thin Films in Ultraviolet Wavelength Region Using Au Nano-Hemisphere on Al Mirror Structures.

Nanomaterials (Basel)

March 2025

Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan.

Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an AlO thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) wavelength range below 400 nm and another in the visible range between 600 and 700 nm. This NHoM structure can be fabricated through a straightforward process involving deposition, sputtering, and annealing, enabling rapid, large-area formation. By adjusting the thickness of the AlO spacer layer in the NHoM structure, we precisely controlled the localized surface plasmon resonance (LSPR) wavelength, spanning a wide range from the UV to the visible spectrum.

View Article and Find Full Text PDF

In this study, we demonstrate the localized surface plasmon resonance (LSPR) in the visible range by using nanostructures on mirrors. The nanohemisphere-on-mirror (NHoM) structure is based on random nanoparticles that were obtained by heat-treating silver thin films and does not require any top-down nanofabrication processes. We were able to successfully tune over a wide wavelength range and obtain full colors using the NHoM structures, which realized full coverage of the Commission Internationale de l'Eclairage (CIE) standard RGB (sRGB) color space.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR) was performed in the deep ultraviolet (UVC) region with Al nanohemisphere structures fabricated by means of a simple method using a combination of vapor deposition, sputtering, and thermal annealing without top-down nanofabrication technology such as electron beam lithography. The LSPR in the UV region was obtained and tuned by the initial metal film thickness, annealing temperature, and dielectric spacer layer thickness. Moreover, we achieved a flexible tuning of the LSPR in a much deeper UVC region below 200 nm using a nanohemisphere on a mirror (NHoM) structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!