The compatibility of low infrared emission and wideband microwave absorption has drawn extensive attention, both theoretically and practically. In this paper, an infrared-radar-compatible stealth metasurface is designed using transparent conductive materials, namely indium tin oxide (ITO) and poly methacrylimide (PMI). The designed structure is a combination of a radar-absorbing layer (RAL) and a low-infrared-emission layer (IRSL), with an overall thickness of about 1.7 mm. It consists of three layers, a top-layer patch-type ITO frequency-selective surface, an intermediate layer of a four-fold rotationally symmetric ITO patterned structure, and a bottom reflective surface. The layers are separated by PMI. Simulation results show that the structure achieves over 90% broadband absorption in the microwave band from 7 to 58 GHz and low emissivity of 0.36 in the infrared band. In addition, due to the four-fold rotationally symmetric design, the structure also exhibits polarization insensitivity and excellent angular stability. Therefore, the designed structure possesses ultra-broadband radar absorption performance, low infrared emissivity, and polarization-insensitive properties at a thin thickness, and has a promising application in the field of multi-band-compatible stealth technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15050399 | DOI Listing |
Nanomaterials (Basel)
March 2025
Advanced Laser Technology Laboratory of Anhui Province, College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China.
The compatibility of low infrared emission and wideband microwave absorption has drawn extensive attention, both theoretically and practically. In this paper, an infrared-radar-compatible stealth metasurface is designed using transparent conductive materials, namely indium tin oxide (ITO) and poly methacrylimide (PMI). The designed structure is a combination of a radar-absorbing layer (RAL) and a low-infrared-emission layer (IRSL), with an overall thickness of about 1.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, India.
The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced techniques.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal gangue was used in this study as the primary material for the synthesis of a fully coal gangue-based phosphorus-silicon-aluminum (SAPO-5) molecular sieve through a hydrothermal process.
View Article and Find Full Text PDFAdv Mater
March 2025
Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China.
Achieving organic red/near infrared (NIR) phosphorescence at high temperatures is theoretically challenging because of the severe nonradiative transitions of excited triplet states with low energy gaps. This study realizes bright and persistent red/NIR afterglow with excellent high-temperature resistance up to 413 K via highly efficient (≈100%) phosphorescence resonance energy transfer (PRET) from rationally designed branched phosphorescence luminogens as energy donors to red/NIR dyes as acceptors, coupled with optimized aggregated structures. According to systematic investigations, the abundant internal cavities formed by the highly branched luminogens in solid states ensure dye loading and space limitation, which can considerably suppress nonradiative transitions at high temperatures, promoting a persistent red/NIR afterglow with excellent stability.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
PhD, Head of the Department of Radiophysical Methods in Medicine; Head of the Laboratory of Biophotonics; A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod, 603950.
Diffuse optical spectroscopy (DOS) is a rapidly advancing non-invasive diagnostic technique to investigate biological tissue, based on probing the target object with optical radiation in the visible and/or near-infrared wavelength range and detecting the diffusely scattered light from the tissue. The signals obtained through DOS provide extensive information about the biochemical composition of tissues due to the presence of light-absorbing compounds known as chromophores. To date, DOS is widely employed to detect major chromophores such as deoxygenated (Hb) and oxygenated (HbO) hemoglobin, water, lipids, and melanin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!