Preparing carbon aerogel in an eco-friendly and inexpensive manner remains a significant challenge. The carbon aerogels derived from food waste (FWCAs) with a three-dimensional connected network structure are successfully synthesized using microwave radiation. The as-prepared FWCA-4 (The KOH/C ratio is 4) has a large specific surface area (1470 m/g), pore volume (0.634 m/g), and a high degree of graphitization. Band-like lattice stripes with a spacing of 0.34 nm, corresponding to the graphite plane, are observed. A high specific capacitance of 314 F/g at 1.0 A/g and an excellent capacitance retention (>90% after 10,000 cycles) make the FWCA-4 suitable for high-performance supercapacitor electrode materials. Furthermore, the specific surface area and pore volume of FWCA-4 are larger and the degree of graphitization is higher than in ordinary porous carbon derived from food waste (FWPC). The assembled symmetrical solid capacitor from FWCA-4 exhibits a maximum energy density of approximately 179.9 W/kg in neutral ion electrolytes. Thus, food waste is successfully used to prepare carbon aerogels through a gelation process using microwave radiation. The recycling of waste biomass is achieved, and the results provide insights for the preparation of carbon aerogels using biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15050387 | DOI Listing |
Nanomaterials (Basel)
March 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
Preparing carbon aerogel in an eco-friendly and inexpensive manner remains a significant challenge. The carbon aerogels derived from food waste (FWCAs) with a three-dimensional connected network structure are successfully synthesized using microwave radiation. The as-prepared FWCA-4 (The KOH/C ratio is 4) has a large specific surface area (1470 m/g), pore volume (0.
View Article and Find Full Text PDFChemphyschem
March 2025
Department of Physics, Florida A&M University, Tallahassee, FL, 32307, USA.
In this work, monolithic graphene oxide aerogel (GOA) with a volume of about 4 cm was obtained. In order to modify its properties, the GOA samples were irradiated with Co gamma rays with doses from 10 to 220 kGy. By using XPS it was found that the oxygen/carbon ratio in the samples studied decreases as a result of irradiation.
View Article and Find Full Text PDFNanomicro Lett
March 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, People's Republic of China.
The treatment of ammonia nitrogen wastewater (ANW) has garnered significant attention due to the ecology, and even biology is under increasing threat from over discharge ANW. Conventional ANW treatment methods often encounter challenges such as complex processes, high costs and secondary pollution. Considerable progress has been made in employing solar-induced evaporators for wastewater treatment.
View Article and Find Full Text PDFChemosphere
March 2025
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Salerno, Italy. Electronic address:
This work proposes the fabrication of a novel adsorbent based on agro-waste resources with functional adsorption properties to remove a recalcitrant pollutant, such as Nimesulide, from water effluents. An aerogel system, produced through supercritical carbon dioxide drying, was made of cactus powder and 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. The use of ionic liquid allowed to obtain a 3D porous structure showing a mean pore size of 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Environmental and Geography, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 Zhejiang, PR China. Electronic address:
The storage characteristics of sodium ions in CoSe are intricately linked to the doping species and concentrations of heteroatoms within the carbon matrix. However, a systematic study of the impact of heteroatom doping on the interfacial forces between the carbon matrix and CoSe has not been systematically investigated. In this work, CoSe nanoparticles coated with different heteroatom doping (N/S) carbon aerogels derived from sodium alginate (SA) were constructed to investigate the influence of dopant atoms on the interfacial forces at the C matrix and CoSe interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!