Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical nonreciprocity and nonreciprocal devices such as optical diodes have broad and promising applications in various fields, ranging from optical communication to signal process. Here, we propose a magnet-free nonreciprocal scheme based on the four-wave mixing (FWM) effect in semiconductor quantum dots (SQDs). Via controlling the directions of the coupling fields, the probe field can achieve high transmission in the forward direction within a certain frequency range due to the FWM effect. And the transmission of the probe field in the backward direction undergoes significant reduction, as the FWM effect is absent. The calculation results show a wide nonreciprocal transmission window with isolation greater than 12 dB and insertion loss lower than 0.08 dB. The influences of the Rabi frequencies of the coupling fields, the medium length, and the decay rates on the nonreciprocal propagation of the probe field are also studied, showing the requirements of these parameters for good nonreciprocal performances. Our work may offer an insight for developing optical nonreciprocal devices based on the FWM process and the SQD system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15050380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!