A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials. | LitMetric

Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials.

Nanomaterials (Basel)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Published: February 2025

Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human-computer interaction, and brain-computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices. Protein-based flexible devices have become an important research direction in the fields of bioelectronics and smart wearables, providing new material support for the development of more environmentally friendly and reliable flexible electronics. Currently, many proteins, such as silk fibroin, collagen, ferritin, and so on, have been used in biosensors, memristors, energy storage devices, and power generation devices. Therefore, in this paper, we provide an overview of related research in the field of protein-based flexible devices, including the concept and characteristics of protein-based flexible devices, fabrication materials, fabrication processes, characterization, and evaluation, and we point out the future development direction of protein-based flexible devices.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15050367DOI Listing

Publication Analysis

Top Keywords

flexible devices
24
protein-based flexible
16
devices
12
electronic devices
8
flexible
7
progress development
4
development flexible
4
devices utilizing
4
utilizing protein
4
protein nanomaterials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!