Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human-computer interaction, and brain-computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices. Protein-based flexible devices have become an important research direction in the fields of bioelectronics and smart wearables, providing new material support for the development of more environmentally friendly and reliable flexible electronics. Currently, many proteins, such as silk fibroin, collagen, ferritin, and so on, have been used in biosensors, memristors, energy storage devices, and power generation devices. Therefore, in this paper, we provide an overview of related research in the field of protein-based flexible devices, including the concept and characteristics of protein-based flexible devices, fabrication materials, fabrication processes, characterization, and evaluation, and we point out the future development direction of protein-based flexible devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15050367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!