Two-Dimensional Nanomaterials for Polymer-Based Packaging Applications: A Colloidal Perspective.

Nanomaterials (Basel)

Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Material Science and Engineering, Peking University, Beijing 100871, China.

Published: February 2025

The integration of two-dimensional (2D) nanomaterials into polymer-based packaging presents a promising avenue for sustainable, high-performance materials. This perspective explores the roles of colloidal interactions in the assembly of 2D materials into thin films for packaging applications. We begin by analyzing the types of colloidal forces present in 2D nanomaterials and their impact on dispersion and stability. We then explore how these colloidal forces can be modulated through chemical structure, ionic intercalation, and shear forces, influencing the stacking behavior and orientation of 2D materials within the films. The incorporation of these 2D materials into polymer-based packaging systems is also considered, with a focus on how surface functionalization and dispersion techniques enhance their interaction with the polymer matrix to improve barrier properties against gases and moisture, increase mechanical strength, and impart antimicrobial effects. This work underscores the critical role of colloidal interactions in optimizing the design and performance of 2D-nanomaterial-based packaging for sustainable development.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15050359DOI Listing

Publication Analysis

Top Keywords

polymer-based packaging
12
two-dimensional nanomaterials
8
nanomaterials polymer-based
8
packaging applications
8
colloidal interactions
8
colloidal forces
8
packaging
5
colloidal
5
applications colloidal
4
colloidal perspective
4

Similar Publications

Two-Dimensional Nanomaterials for Polymer-Based Packaging Applications: A Colloidal Perspective.

Nanomaterials (Basel)

February 2025

Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Material Science and Engineering, Peking University, Beijing 100871, China.

The integration of two-dimensional (2D) nanomaterials into polymer-based packaging presents a promising avenue for sustainable, high-performance materials. This perspective explores the roles of colloidal interactions in the assembly of 2D materials into thin films for packaging applications. We begin by analyzing the types of colloidal forces present in 2D nanomaterials and their impact on dispersion and stability.

View Article and Find Full Text PDF

Modeling of Stress Relaxation Behavior in HDPE and PP Using Fractional Derivatives.

Polymers (Basel)

February 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Cd. Universitaria, San Nicolás de los Garza 66455, Mexico.

In this work, the viscoelastic behavior of high-density polyethylene (HDPE) and polypropylene (PP) was studied through stress relaxation experiments conducted at different strain levels. The main objective was to evaluate classical, fractional, and conformable derivatives to analyze molecular mobility, using statistical methods to identify the most accurate representation of the viscoelastic response. Besides the coefficient of determination (R), the average absolute deviation () and mean squared error () were used as evaluation metrics, along with a multivariate analysis of variance (MANOVA) and the response surface methodology (RSM) to optimize the correspondence between experimental data and model predictions.

View Article and Find Full Text PDF

Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste.

Carbohydr Res

April 2025

Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India. Electronic address:

This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Application of Nano-Titanium Dioxide in Food Antibacterial Packaging Materials.

Bioengineering (Basel)

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

Food waste and food safety issues caused by food spoilage have been brought into focus. The inhibition of food spoilage bacteria growth is the key to maintaining food quality and extending the shelf life of food. Photodynamic inactivation (PDI) is an efficient antibacterial strategy which provides a new idea for the antibacterial preservation of food.

View Article and Find Full Text PDF

Development of sustainable and active food packaging films based on alginate enriched with plant polyphenol carbon dots and layered clay.

Int J Biol Macromol

March 2025

Xiamen Meijiamei New Material Technology Co., Ltd., Xiamen 361110, PR China. Electronic address:

Natural polymer based food packaging has attracted more and more attention, but the lack of active functions of natural polymer hinders its application in the field of active packaging. In this study, chlorogenic acid carbon dots (CGA-CDs) was synthesized mildly using natural plant polyphenol CGA as carbon source, and CGA functionalized layered clays (LDHs@CGA) was introduced as reinforcing agent. Alg active films were fabricated by solution casting method using natural polysaccharide-alginate (Alg), CGA-CDs and LDHs@CGA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!