Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sn-doped TiO-carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal-support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to the study of the influence of preliminary functionalization of the carbon on the properties of Pt/TiSnO-C catalysts. The structural, compositional and morphological differences between the samples prepared using functionalized or unmodified carbon, as well as the effect of carbon pre-modification on the electrocatalytic behavior of the synthesized Pt catalysts, were investigated using TEM, XRD, XPS, nitrogen adsorption and electrochemical measurements. The presence of oxygen-containing functional groups on carbon treated with HNO and glucose leads to the formation of a homogeneous coating of the carbon with dispersed crystallites of mixed oxide. Elemental mapping revealed the proximity of Sn species with highly dispersed (2-3 nm) Pt particles. Notably, the electrochemical results indicated enhanced activity in CO electrooxidation for both functionalized and unmodified carbon-containing catalysts. An improvement in the 10,000-cycle long-term stability of the catalyst prepared using functionalized carbon was evident compared to the catalyst with untreated carbon or reference Pt/C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15050342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!