Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron-based metal-organic frameworks (Fe-MOFs) are widely used for agricultural chemical delivery due to their high loading capacity, and they also have the potential to provide essential iron for plant growth. Therefore, they hold significant promise for agricultural applications. Evaluating the plant biotoxicity of Fe-MOFs is crucial for optimizing their use in agriculture. In this study, we used the natural biomacromolecule carboxymethyl cellulose (CMC) to encapsulate the Fe-MOF NH-MIL-101 (Fe) (MIL). Through hydroponic experiments, we investigated the biotoxic effects of Fe-MOFs on rice before and after CMC modification. The results show that the accumulation of iron in rice is dependent on the dose and the exposure concentration of Fe-MOFs. CMC modification (MIL@CMC) can reduce the release rate of Fe ions from Fe-MOFs in aqueous solutions with different pH values (5 and 7). Furthermore, MIL@CMC treatment significantly increases the absorption of iron by both the aboveground and root parts of rice. MIL@CMC significantly alleviated the growth inhibition of rice seedlings and increased the aboveground biomass of rice under medium- to high-exposure conditions. Specifically, in rice roots, MIL induced a more intense oxidative stress response, with significant increases in the activities of related antioxidant enzymes (CAT, POD, and SOD) and MDA content. Our results demonstrated that the encapsulation of NH-MIL-101(Fe) using CMC effectively alleviated oxidative damage and promoted the uptake and growth of iron in rice. These findings suggest that rational modification can have a positive effect on reducing the potential phytotoxicity of MOFs and improving their biosafety in agricultural applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/nano15050336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!