A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design Strategies of S Molecule Cathodes for Room-Temperature Na-S Batteries. | LitMetric

Design Strategies of S Molecule Cathodes for Room-Temperature Na-S Batteries.

Nanomaterials (Basel)

Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Published: February 2025

Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium-sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium-sulfur batteries exhibit significant advantages in these regards. The most commonly utilized cathode active material is the S molecule, whose intricate transformation process plays a crucial role in enhancing battery capacity. However, this process concomitantly generates a substantial quantity of polysulfide intermediates, leading to diminished kinetics and reduced cathode utilization efficiency. The pivotal strategy is the design of catalysts with adsorption and catalytic functionalities, which can be applied to the cathode. Herein, we present a summary of the current research progress in terms of nanostructure engineering, catalyst strategies, and regulating sulfur species conversion pathways from the perspective of high-performance host design strategy. A comprehensive analysis of the catalytic performance is provided from four perspectives: metal catalysts, compound catalysts, atomically dispersed catalysts, and heterojunctions. Finally, we analyze the bottlenecks and challenges, offering some thoughts and suggestions for overcoming these issues.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15050330DOI Listing

Publication Analysis

Top Keywords

sodium-sulfur batteries
12
design strategies
4
strategies molecule
4
molecule cathodes
4
cathodes room-temperature
4
room-temperature na-s
4
batteries
4
na-s batteries
4
batteries sodium-sulfur
4
batteries provided
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!