A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anti-Inflammatory and Immunomodulatory Properties of Inorganic Fullerene-Like Tungsten Disulfide Nanoparticles in the Culture of Human Peripheral Blood Mononuclear Cells. | LitMetric

Tungsten disulfide (WS) nanoparticles have emerged in the biomedical field as potential theranostic agents due to their unique properties, including biocompatibility. However, their impact on the immune response remains unexplored. This study aimed to evaluate the effects of inorganic fullerene-like WS (IF-WS) nanostructures on human peripheral blood mononuclear cells (PBMCs) in vitro. The study investigated several parameters to evaluate the effects of IF-WS nanoparticles. Cytotoxicity was assessed by measuring cell viability, apoptosis, and necrosis. Internalization of IF-WS by PBMCs was analyzed using morphological and flow cytometric techniques. Proliferation was studied in CellTrace Far Red-prestained total PBMCs stimulated with phytohemagglutinin (PHA) and in isolated T cell cultures stimulated with CD3/CD28-coated beads. Additionally, the production of cytokines and chemokines was measured in culture supernatants of total PBMCs and T cells. IF-WS nanoparticles were non-cytotoxic up to a concentration of 200 µg/mL. Concentrations ≥25 µg/mL inhibited PHA-stimulated PBMC proliferation but did not affect T cell proliferation. Morphological and flow cytometric analysis demonstrated dose- and time-dependent internalization of IF-WS by macrophages. Additionally, IF-WS significantly reduced the production of pro-inflammatory cytokines (IL-1β, TNF-α, IL-8, MCP-1, and GRO-α) in PHA-stimulated PBMCs. Th1, Th17, and Th21 cytokines were downregulated, while Th2, Th9, and T regulatory cytokines were upregulated. In conclusion, this study demonstrated for the first time that pristine IF-WS nanoparticles, at non-cytotoxic concentrations, exhibit notable anti-inflammatory and immunomodulatory properties on activated PBMCs in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15050322DOI Listing

Publication Analysis

Top Keywords

if-ws nanoparticles
12
anti-inflammatory immunomodulatory
8
immunomodulatory properties
8
inorganic fullerene-like
8
tungsten disulfide
8
disulfide nanoparticles
8
human peripheral
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!