The actin cytoskeleton plays an important role in morphological changes of ameloblasts during the formation of enamel, which is indispensable for teeth to withstand wear, fracture and caries progression. This study reveals that the actin nucleator Cobl is expressed in ameloblasts of mandibular molars during amelogenesis. Cobl expression was particularly pronounced during the secretory phase of the enamel-forming cells. Cobl colocalized with actin filaments at the cell cortex. Importantly, our analyses show an influence of Cobl on both ameloblast morphology and cytoskeletal organization as well as on enamel composition. At P0, knock-out causes an increased height of ameloblasts and an increased F-actin content at the apical membrane. During the maturation phase, the F-actin density at the apical membrane was instead significantly reduced when compared to WT mice. At the same time, Cobl-deficient mice showed an increased carbon content of the enamel and an increased enamel surface of mandibular molars. These findings demonstrate a decisive influence of the actin nucleator Cobl on the actin cytoskeleton and the morphology of ameloblasts during amelogenesis. Our work thus expands the understanding of the regulation of the actin cytoskeleton during amelogenesis and helps to further elucidate the complex processes of enamel formation during tooth development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells14050359 | DOI Listing |
Cells
February 2025
Institute of Biochemistry I, Jena University Hospital-Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany.
The actin cytoskeleton plays an important role in morphological changes of ameloblasts during the formation of enamel, which is indispensable for teeth to withstand wear, fracture and caries progression. This study reveals that the actin nucleator Cobl is expressed in ameloblasts of mandibular molars during amelogenesis. Cobl expression was particularly pronounced during the secretory phase of the enamel-forming cells.
View Article and Find Full Text PDFUnlabelled: In all eukaryotic cells, the actin cytoskeleton is maintained in a dynamic steady-state. Actin filaments are continuously displaced from cell periphery, where they assemble, towards the cell's center, where they disassemble. Despite this constant flow and turnover, cellular networks maintain their overall architecture constant.
View Article and Find Full Text PDFAutoimmunity
December 2025
Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China.
Lactylation is widely involved in cellular processes and is pivotal in inflammation and immune regulation. However, the expression and clinical significance of lactylation in rheumatoid arthritis (RA) remain unclear. This study aimed to determine the role of lactylation in RA and its association with immune cell infiltration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637.
Arp (actin-related protein) 2/3 complex nucleates actin filament branches on the sides of preexisting actin filaments during cell and organelle movements. We used computer simulations of mammalian Arp2/3 complex to address fundamental questions about the mechanism. Metadynamics and umbrella free energy sampling simulations of the pathway revealed that a clash between the D-loop of Arp2 and Arp3 produces an energy barrier of 20 ± 6 kcal/mol between the inactive splayed and active short-pitch conformations of Arp2/3 complex.
View Article and Find Full Text PDFJ Cell Biol
May 2025
Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Apical constriction is a critical cell shape change that drives cell internalization and tissue bending. How precisely localized actomyosin regulators drive apical constriction remains poorly understood. Caenorhabditis elegans gastrulation provides a valuable model to address this question.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!