Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis. This review aims to summarize current knowledge on the involvement of key ABPs in the development and pathophysiology of endometriosis. We discuss how these proteins influence cytoskeletal remodeling, focal adhesion formation, and interactions with the extracellular matrix, contributing to the unique mechanical properties of endometriotic cells. Furthermore, we explore the putative potential of targeting ABPs as a therapeutic strategy to mitigate the invasive phenotype of endometriotic lesions. By elucidating the role of ABPs in endometriosis, this review provides a foundation for future research and innovative treatment approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells14050360 | DOI Listing |
Cells
February 2025
Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland.
Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis.
View Article and Find Full Text PDFCells
February 2025
NUS Bia-Echo Asia Centre of Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
The ovary is a dynamic organ where mechanical forces profoundly regulate follicular development, oocyte maturation, and overall reproductive function. These forces, originating from the extracellular matrix (ECM), granulosa and theca cells, and ovarian stroma, influence cellular behavior through mechanotransduction, translating mechanical stimuli into biochemical responses. This review explores the intricate interplay between mechanical cues and ovarian biology, focusing on key mechanosensitive pathways such as Hippo signaling, the PI3K/AKT pathway, and cytoskeletal remodeling, which govern follicular dormancy, activation, and growth.
View Article and Find Full Text PDFAdv Biol (Weinh)
March 2025
Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany.
Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease.
View Article and Find Full Text PDFBiophys Rep
February 2025
Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
Viral epidemics pose major threats to global health and economies. A hallmark of viral infection is the reshaping of host cell membranes and cytoskeletons to form organelle-like structures, known as viral factories, which support viral genome replication. Viral infection in many cases induces the cytoskeletal network to form cage-like structures around viral factories, including actin rings, microtubule cages, and intermediate filament cages.
View Article and Find Full Text PDFACS Omega
March 2025
Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China.
Carvacrol has been demonstrated to possess anti-inflammatory and antioxidant properties. This study aims to further explore the mechanisms by which carvacrol mitigates LPS-induced human microvascular endothelial cells injury by improving mitochondrial function. An inflammatory injury model of human microvascular endothelial cells was established using LPS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!