Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections. New HIV infections increased during the 2 years after the COVID-19 pandemic. Understanding the intricate cellular processes underlying HIV pathogenesis is crucial for developing effective therapeutic strategies. Among these processes, autophagy and programmed cell death modalities, including apoptosis, necroptosis, pyroptosis, and ferroptosis, play pivotal roles in the host-virus interaction dynamics. Autophagy, a highly conserved cellular mechanism, acts as a double-edged sword in HIV infection, influencing viral replication, immune response modulation, and the fate of infected cells. Conversely, apoptosis, a programmed cell death mechanism, is a critical defense mechanism against viral spread and contributes to the depletion of CD4+ T cells, a hallmark of HIV/AIDS progression. This review aims to dissect the complex interplay between autophagy and these programmed cell death modalities in HIV-induced pathogenesis. It highlights the molecular mechanisms involved, their roles in viral persistence and immune dysfunction, and the challenges posed by the viral reservoir and drug resistance, which continue to impede effective management of HIV pathology. Targeting these pathways holds promise for novel therapeutic strategies to mitigate immune depletion and chronic inflammation, ultimately improving outcomes for individuals living with HIV.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells14050351DOI Listing

Publication Analysis

Top Keywords

programmed cell
16
cell death
16
autophagy programmed
12
death modalities
12
hiv pathogenesis
8
hiv infection
8
therapeutic strategies
8
hiv
7
autophagy
4
cell
4

Similar Publications

The CD2-depleting drug alefacept (LFA3-Ig) preserved beta cell function in new-onset type 1 diabetes (T1D) patients. The most promising biomarkers of response were late expansion of exhausted CD8 T cells and rare baseline inflammatory islet-reactive CD4 T cells, neither of which can be used to measure responses to drug in the weeks after treatment. Thus, we investigated whether early changes in T cell immunophenotypes could serve as biomarkers of drug activity.

View Article and Find Full Text PDF

Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known.

View Article and Find Full Text PDF

Genetic evidence for the suppressive role of zebrafish vhl targeting mavs in antiviral innate immunity during RNA virus infection.

J Immunol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.

The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation.

View Article and Find Full Text PDF

Precise motif and cross-presentation of coronavirus peptides by feline MHC class I: implications for the mild infection of SARS-CoV-2.

J Immunol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

As one of the earliest identified susceptible animals for the SARS-CoV-2, cats are also the vulnerable hosts for feline coronaviruses, ie feline enteric coronavirus (FECV). Here, to understand the cross-presentation of coronavirus-derived peptides by cat major histocompatibility complex molecule feline leucocyte antigen (FLA) class I, unpredictable natural peptide motifs presented by FLA-K*00701 and FLA-E*00301 were identified through peptide elution and further confirmed by the structural determination of the 2 FLA class I molecules. Based on these precise motifs of FLA class I peptides, the atlas of cross-presenting peptides from different coronaviruses in cats were sketched with 3 hotspots in C-terminal half of ORF1ab protein.

View Article and Find Full Text PDF

Natural killer (NK) cells are a promising approach for cellular cancer immunotherapy and are being investigated to treat patients with multiple myeloma (MM). We found that MM patient blood NK cell frequencies were normal with increased activating receptors and cytotoxic granules, without evidence of functional exhaustion. Despite this activated state, MM target cells were resistant to conventional NK cells by unclear mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!