Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiac fibrosis is a major driver of heart failure, a leading cause of morbidity and mortality worldwide. Advances in single-cell transcriptomics have revealed the pivotal role of SPP1+ macrophages in the pathogenesis of cardiac fibrosis, positioning them as critical mediators and promising therapeutic targets. SPP1+ macrophages, characterized by elevated expression of () and often co-expressing (), localize to fibrotic niches in the heart and other organs. These cells interact with activated fibroblasts and myofibroblasts, driving extracellular matrix remodeling and fibrosis progression. Their differentiation is orchestrated by signals such as CXCL4, GM-CSF, and IL-17A, further emphasizing their regulatory complexity. Therapeutic strategies targeting SPP1+ macrophages have shown encouraging preclinical results. Approaches include silencing using antibody-siRNA conjugates and modulating key pathways involved in macrophage differentiation. These interventions have effectively reduced fibrosis and improved cardiac function in animal models. The mechanisms underlying SPP1+ macrophage function in cardiac fibrosis provide a foundation for innovative therapies aimed at mitigating pathological remodeling and improving outcomes in patients with heart failure. This emerging field has significant potential to transform the treatment of fibrotic heart disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells14050345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!