Several immunoregulatory or immune checkpoint receptors including T cell immunoglobulin and mucin domain 3 (TIM-3) have been implicated in glioblastoma progression. Rigorous investigation over the last decade has elucidated TIM-3 as a key player in inhibiting immune cell activation and several key associated molecules have been identified both upstream and downstream that mediate immune cell dysfunction mechanistically. However, despite several reviews being published on other immune checkpoint molecules such as PD-1 and CTLA-4 in the glioblastoma setting, no such extensive review exists that specifically focuses on the role of TIM-3 in glioblastoma progression and immunosuppression. Here, we critically summarize the current literature regarding TIM-3 expression as a prognostic marker for glioblastoma, its expression profile on immune cells in glioblastoma patients and the exploration of anti-TIM-3 agents in glioblastoma pre-clinical models for potential clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells14050346DOI Listing

Publication Analysis

Top Keywords

glioblastoma progression
12
role tim-3
8
tim-3 glioblastoma
8
immune checkpoint
8
immune cell
8
glioblastoma
7
immune
5
progression immunoregulatory
4
immunoregulatory immune
4
checkpoint receptors
4

Similar Publications

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, characterized by its heterogeneity in cellular components, including reactive astrocytes and microglia. Since neuroimmune responses like astrogliosis and microgliosis gain recognition as vital factors in brain tumor progression, there is a growing need for clinically relevant models that assess the interactions between astrocytes, microglia, and GBM. Here, a NEuroimmune-Oncology Microphysiological Analysis Platform (NEO-MAP) is presented as a "new map" to observe astrocytic scar formation and microgliosis in response to GBM.

View Article and Find Full Text PDF

Several immunoregulatory or immune checkpoint receptors including T cell immunoglobulin and mucin domain 3 (TIM-3) have been implicated in glioblastoma progression. Rigorous investigation over the last decade has elucidated TIM-3 as a key player in inhibiting immune cell activation and several key associated molecules have been identified both upstream and downstream that mediate immune cell dysfunction mechanistically. However, despite several reviews being published on other immune checkpoint molecules such as PD-1 and CTLA-4 in the glioblastoma setting, no such extensive review exists that specifically focuses on the role of TIM-3 in glioblastoma progression and immunosuppression.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the deadliest brain tumour with an extremely poor prognosis. Tryptophan catabolism could enhance an array of protumour-genic signals and promoted tumour progression in GBM. However, the mechanisms of oncogenic signalling under tryptophan catabolism and potential therapy targeting this pathway have not been completely understood.

View Article and Find Full Text PDF

Migration of Regulatory T Cells to the Peritumor Microenvironment of Experimental Glioblastoma.

Sovrem Tekhnologii Med

March 2025

MD, PhD, Head of the Laboratory of Solid Tumor Immunotherapy; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia, 1, Bldg. 10, Ostrovityanova St., Moscow, 117513, Russia; Senior Researcher, Laboratory of Cell Technologies; Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russia, 28 Orekhovy Blvd., Moscow, 115682, Russia; Senior Researcher, Laboratory of Molecular Regeneration Mechanisms; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.

Unlabelled: Glioblastoma is the most aggressive primary brain tumor with poor prognosis characterized by resistance to standard treatments and immune evasion. Regulatory T lymphocytes (Tregs) play a key role in immune suppression in the tumor microenvironment and can be used as targets for malignant gliomas therapy. is to study migration of Tregs to the tumor site in the process of dynamic glioblastoma growth on the transgenic C57Bl/6-FoxP3-eGFP mouse line.

View Article and Find Full Text PDF

Aging and senescence: Key players in brain tumor progression and drug resistance.

Drug Resist Updat

March 2025

Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. Electronic address:

Aging plays a critical role in the development, progression, and therapeutic challenges associated with brain tumors, particularly glioblastomas (GBM). As the population ages, the incidence of brain tumors, including GBM, increases, with aging emerging as a significant prognostic factor influencing survival outcomes. This review examines the molecular mechanisms linking aging and brain tumor progression, with a specific focus on glioblastomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!