Ageing is a major risk factor for cognitive and physical decline, but its mechanisms remain poorly understood. This study aimed to detect early cognitive and physical changes, and to analyze the pathway involved by monitoring two groups of mice: a young and an adult group. The study has identified the types of molecules involved in the hippocampus. Adult mice (47 weeks) showed significantly reduced exploratory behavior compared to young mice (11 weeks), although spatial working memory showed no difference. In terms of physical function, grip strength was significantly reduced in adult mice. The Frailty Index (FI) further highlighted age-related changes in adult mice. To investigate the causes of cognitive decline, adult mice were categorized based on their declining cognitive function. Microarray analysis of their hippocampi revealed that the cholinergic receptor nicotinic α3 subunit (Chrna3) was significantly reduced in mice with cognitive decline compared to controls. Subsequent in vitro experiments showed that oxidative stress and cholinesterase inhibitors decreased Chrna3 expression, whereas nicotine and cytisine increased it. These results suggest that Chrna3 is a key factor in age-related cognitive decline. The development of therapeutic strategies targeting Chrna3 expression may offer promising avenues for preclinical and clinical research to mitigate cognitive ageing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells14050340 | DOI Listing |
Mol Biol Cell
March 2025
Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan.
Ceramides, especially acylceramides and protein-bound ceramides, are important for skin barrier formation. However, due to the neonatal lethality of knockout (KO) of the genes involved in the production of these ceramides, the effects of their KO in adult mice have been unclear. To investigate these effects, we created mice with tamoxifen-inducible conditional KO of the fatty acid elongase .
View Article and Find Full Text PDFCells
February 2025
Department of Anesthesiology, University of California, San Diego, CA 92093, USA.
A significant portion of adolescents suffer from mental illnesses and persistent pain due to repeated stress. The components of the nervous system that link stress and pain in early life remain unclear. Prior studies in adult mice implicated the innate immune system, specifically Toll-like receptors (TLRs), as critical for inducing long-term anxiety and pain-like behaviors in social defeat stress (SDS) models.
View Article and Find Full Text PDFCells
February 2025
Advanced Research Center for Geriatric and Gerontology, Akita University, Akita 010-8543, Japan.
Ageing is a major risk factor for cognitive and physical decline, but its mechanisms remain poorly understood. This study aimed to detect early cognitive and physical changes, and to analyze the pathway involved by monitoring two groups of mice: a young and an adult group. The study has identified the types of molecules involved in the hippocampus.
View Article and Find Full Text PDFCells
February 2025
Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
Preclinical studies have shown that the blood from female mice exposed weekly to magnetic fields inhibited breast cancer growth. This double-blind randomized controlled trial investigated whether analogous magnetic therapy could produce similar anticancer sera from human subjects. Twenty-six healthy adult females (ages 30-45) were assigned to either a magnetic therapy group, receiving twice weekly 1 mT magnetic exposures (10 min/session) for 4 weeks, or a control group, who underwent identical sham exposure.
View Article and Find Full Text PDFFront Immunol
March 2025
Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Introduction: Esophageal cancer presents significant challenges due to the limited efficacy and severe side effects associated with conventional treatments. The identification of epigenetic regulatory molecules that are aberrantly expressed in tumors is crucial for elucidating the mechanisms underlying the development and progression of esophageal cancer.
Methods: We performed high-throughput methylation level analysis on cancerous and adjacent tissues from 25 patients, identifying the differentially methylated gene utilizing Bismark software and data from TCGA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!