Insulin resistance (IR) disrupts hepatic glucose metabolism and mitochondrial function, which contributes to metabolic disorders. The present study examined the effects of tomatine on glucose metabolism in high-glucose-induced IR hepatocytes and explored its underlying mechanisms using AML12 and HepG2 cell models. The results showed that tomatine did not exhibit cytotoxic effects. Under IR conditions, tomatine dose-dependently improved glucose metabolism by enhancing glucose consumption and restoring the mRNA expression of the glucose transporter Glut2 and gluconeogenesis-related genes ( and ). Mechanistically, tomatine activated the phosphorylation of AMP-activated protein kinase (AMPK) and upregulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), reversing the IR-induced suppression of the AMPK/PGC1α pathway. In addition, tomatine enhanced mitochondrial oxidative function by restoring the oxygen consumption rate, increasing ATP production, and upregulating mitochondrial oxidative phosphorylation complex proteins. Both genetic and pharmacological inhibition of AMPK abolished these beneficial effects, confirming its central role in mediating tomatine's actions. Overall, our findings suggest that tomatine is a promising therapeutic candidate for enhancing hepatic glucose metabolism and mitochondrial function in IR-associated metabolic disorders through AMPK activation.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells14050329DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
20
metabolism mitochondrial
12
aml12 hepg2
8
amp-activated protein
8
hepatic glucose
8
mitochondrial function
8
metabolic disorders
8
mitochondrial oxidative
8
tomatine
7
glucose
7

Similar Publications

Context: In 2023, we employed Dexcom G6 for real-time continuous glucose monitoring (rt-CGM); it showed high usefulness but unsatisfactory accuracy in type 1 diabetes summer camp (camp) participants.

Objective: To assess the usefulness, recommendation and accuracy of a new rt-CGM system in camp, 2024.

Methods: Sensor glucose (SG) concentrations were measured by Dexcom G7 (G7) from 6 days prior to camp.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Diabetic nephropathy is a severe chronic complication characterized by cytotoxicity, inflammation, and fibrosis, ultimately leading to renal failure. This study systematically investigated the effects of the PARP1 inhibitor PJ-34 on high glucose-induced cytotoxicity, inflammation, and fibrosis in HK-2 cells, as well as its improvement on neuropathic pain response and transforming growth factor β (TGFβ) expression in a type 1 diabetes mellitus diabetic nephropathy mouse model. Through cellular and animal experiments, we observed that PJ-34 significantly enhanced the proliferative capacity of cells damaged by high glucose, reduced apoptosis, and decreased the release of proinflammatory factors TGFα, interleukin-6, and interleukin-1β.

View Article and Find Full Text PDF

Itaconate restrains acute proinflammatory activation of microglia MG after traumatic brain injury in mice.

Sci Transl Med

March 2025

Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.

Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 ()], is a pivotal metabolic regulator in immune cells, particularly in macrophages.

View Article and Find Full Text PDF

Persistent systemic inflammation is associated with an elevated risk of cardiometabolic diseases. However, the characteristics of the innate and adaptive immune systems in individuals who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!