The Roles of Distinct Transcriptional Factors in the Innate Immunity of .

Cells

Shenzhen Research Institute, Hunan University, Shenzhen 518000, China.

Published: February 2025

Deleterious molecules or factors produced by pathogens can hinder the normal physiological functioning of organisms. In response to these survival challenges, organisms rely on innate immune signaling as their first line of defense, which regulates immune-responsive genes and antimicrobial peptides to protect against pathogenic infections. These genes are under the control of transcription factors, which are known to regulate the transcriptional activity of genes after binding to their regulatory sequences. Previous studies have employed as a host-pathogen interaction model to demonstrate the essential role of different transcription factors in the innate immunity of worms. In this review, we summarize the advances made regarding the functioning of distinct transcription factors in the innate immune response upon pathogen infection. Finally, we discuss the open questions in the field, whose resolutions have the potential to expand our understanding of the mechanisms underlying the innate immunity of organisms.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells14050327DOI Listing

Publication Analysis

Top Keywords

factors innate
12
innate immunity
12
transcription factors
12
innate immune
8
factors
5
innate
5
roles distinct
4
distinct transcriptional
4
transcriptional factors
4
immunity deleterious
4

Similar Publications

Genetic evidence for the suppressive role of zebrafish vhl targeting mavs in antiviral innate immunity during RNA virus infection.

J Immunol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.

The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation.

View Article and Find Full Text PDF

Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation.

View Article and Find Full Text PDF

Interleukin 33 (IL-33) is a pleiotropic cytokine released from diverse cell types that regulate both pro- and anti-inflammatory responses during pathogen infection. However, it remains unclear whether IL-33 controls key aspects of cutaneous immunity against skin-penetrating parasites. In this study, mice percutaneously infected with the parasitic helminth Strongyloides ratti were investigated to understand mechanisms of anamnestic immunity at the skin barrier.

View Article and Find Full Text PDF

Persistent systemic inflammation is associated with an elevated risk of cardiometabolic diseases. However, the characteristics of the innate and adaptive immune systems in individuals who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!