The Enhancer-Promoter-Mediated Transcription During Neurite Regrowth of Injured Cortical Neurons.

Cells

Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.

Published: February 2025

Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons. Among them, the expression of the gene increased most significantly during neurite regrowth, indicating its potential to promote neuronal regeneration. In this study, we investigated the regulatory mechanism of transcription. An algorithm was developed to predict the novel enhancer regions of candidate genes. By combining active enhancer marks, histone H3 lysine 27 acetylation (H3K27ac), and histone H3 lysine 4 mono-methylation (H3K4me1), we identified a candidate enhancer region for located 1.7 Mb upstream and 0.1 Mb downstream of the gene. This region was organized into enhancers (Ens) 1-15. Enhancer RNA expression from the predicted En1-15 regions, DNA topological dynamics, and the activity of predicted enhancers were analyzed to validate the candidate active enhancers. Our findings showed that the En8, 9, 10, 14, and 15 regions expressed higher eRNAs during neurite regrowth. Notably, the En8-2 and En14-2 subregions showed significantly up-regulated H3K4me1 modification during neurite regrowth. Using chromatin conformation capture assays and enhancer-reporter assays, we delineated that the molecular regulation of transcription during neurite regrowth occurs through looped En8-promoter interplay.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells14050319DOI Listing

Publication Analysis

Top Keywords

neurite regrowth
24
transcription neurite
8
regrowth injured
8
injured cortical
8
cortical neurons
8
genes rags
8
brain injury
8
histone lysine
8
neurite
6
regrowth
6

Similar Publications

The Enhancer-Promoter-Mediated Transcription During Neurite Regrowth of Injured Cortical Neurons.

Cells

February 2025

Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.

Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons.

View Article and Find Full Text PDF

KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons.

Neurobiol Dis

January 2025

Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands. Electronic address:

Mutations in the microtubule-binding motor protein kinesin 5 A (KIF5A) are implicated in several adult-onset motor neuron diseases, including Amyotrophic Lateral Sclerosis, Spastic Paraplegia Type 10 and Charcot-Marie-Tooth Disease Type 2. While KIF5 family members transport a variety of cargos along axons, the specific cargos affected by KIF5A mutations remain poorly understood. Here, we generated KIF5Anull mutant human motor neurons and analyzed the impact on axonal transport and motor neuron outgrowth and regeneration in vitro.

View Article and Find Full Text PDF

This pilot study investigated the potential of aloe vera (AV) to promote neurite outgrowth in organotypic dorsal root ganglia (DRG) explants (n = 230) from neonatal rats (n = 15). Using this in vitro model of acute axotomy, we assessed neurite outgrowth exceeding 1.5 times the explant diameter (viable explants) and measured the longest neurite length.

View Article and Find Full Text PDF

Peripheral nerve regeneration depends on close interaction between neurons and Schwann cells (SCs). After nerve injury, SCs produce growth factors and cytokines that are crucial for axon re-growth. Previous studies revealed the supernatant of SCs exposed to nuclear magnetic resonance therapy (NMRT) treatment to increase survival and neurite formation of rat dorsal root ganglion (DRG) neurons in vitro.

View Article and Find Full Text PDF

Mutations in the microtubule binding motor protein, kinesin family member 5A (KIF5A), cause the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. While KIF5 family members transport a variety of cargos along axons, it is still unclear which cargos are affected by mutations. We generated null mutant human motor neurons to investigate the impact of KIF5A loss on the transport of various cargoes and its effect on motor neuron function at two different timepoints .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!