Background: Skeletal muscle wasting is commonly observed in aging, immobility, and chronic diseases. In pathological conditions, the impairment of skeletal muscle and immune system often occurs simultaneously. Recent studies have highlighted the initiative role of skeletal muscle in interactions with immune cells. However, the impact of skeletal muscle wasting on macrophage inflammatory responses remains poorly understood.
Methods: To investigate the effect of atrophic myotubes on the inflammatory response of macrophages, we established two in vitro models to induce myotube atrophy: one induced by D-galactose and the other by starvation. Conditioned medium (CM) from normal and atrophic myotubes were collected and administered to bone marrow-derived macrophages (BMDMs) from mice. Subsequently, lipopolysaccharide (LPS) stimulation was applied, and the expression of inflammatory cytokines was measured via RT-qPCR.
Results: Both D-galactose and starvation treatments reduced myotube diameter and upregulated muscle atrophy-related gene expression. CM from both atrophic myotubes models augmented the gene expression of pro-inflammatory factors in BMDMs following LPS stimulation, including , , and . Notably, CM from starvation-induced atrophic myotubes also enhanced , , and expression in BMDMs after stimulation, a response not observed in D-galactose-induced atrophic myotubes.
Conclusions: These findings suggest that CM from atrophic myotubes enhanced the expression of LPS-induced pro-inflammatory mediators in macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cells14050317 | DOI Listing |
Cells
February 2025
Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
Background: Skeletal muscle wasting is commonly observed in aging, immobility, and chronic diseases. In pathological conditions, the impairment of skeletal muscle and immune system often occurs simultaneously. Recent studies have highlighted the initiative role of skeletal muscle in interactions with immune cells.
View Article and Find Full Text PDFProtein-energy wasting (PEW) facilitates major adverse clinical outcomes in chronic renal failure (CRF), with current therapies not suitable for all patients. Faecalibacterium prausnitzii (F. prausnitzii) can alleviate chronic kidney disease, with unclear effects and mechanisms on CRF with PEW.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea.
Sarcopenia is an age-related muscle atrophy characterized by decreased muscle mass and function. However, potential treatments to alleviate sarcopenia remain limited. In this study, we investigated the effects of α-ketoisocaproate (KIC) on C2C12 differentiation and reactive oxygen species (ROS)-induced atrophy in C2C12 myotubes.
View Article and Find Full Text PDFEMBO Rep
March 2025
CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France.
Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively.
View Article and Find Full Text PDFRev Endocr Metab Disord
March 2025
Abbott Nutrition R&D, Abbott Laboratories, 18004, Granada, Spain.
Obesity and type-2 diabetes mellitus (T2DM) are interrelated metabolic disorders primarily driven by overnutrition and physical inactivity, which oftentimes entails a transition from obesity to T2DM. Compromised musculoskeletal health consistently emerges as a common hallmark in the progression of these metabolic disorders. Skeletal muscle atrophy and dysfunction can further impair whole-body metabolism and reduce physical exercise capacity, thus instigating a vicious cycle that further deteriorates the underlying conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!