Purpose: Evolving evidence demonstrates the role of epigenetics in the pathogenesis of osteoarthritis (OA), whereas in terms of mechanism, DNA methylation has received the highest attention thus far. This systematic review summarizes the current knowledge of DNA methylation and its influence on the pathogenesis of OA.

Methods: A protocol in alignment with the PRISMA guidelines was employed to systematically review eight bibliographic databases between 1 January 2015 and 31 January 2021, to identify associations between DNA methylation and articular chondrocytes in OA.

Results: We identified 23 gene-specific studies and 28 genome-wide methylation analyses. Gene-specific studies focused on pro-inflammatory markers in OA, demonstrating that DNA hypomethylation in the promoter region results in overexpression and hypermethylation is linked to gene silencing. Others reported on the association between OA risk genes and DNA methylation. Genome-wide methylation studies reported on differentially methylated regions (DMRs) comparing OA and non-OA chondrocytes. DMRs were seen in hip OA and knee OA chondrocytes.

Conclusion: The current body of literature demonstrates the potential and crucial role of DNA methylation in the pathogenesis and progression of OA. This knowledge contributes to the understanding of the pathomechanisms behind OA at gene-specific and genome-wide levels. The observed differences in DNA methylation between healthy and diseased tissues indicate the occurrence of changes in DNA methylation. Based on this, future research in this field that explores the characteristics of potentially reversible changes in DNA methylation may lead to opportunities for causative treatment options for OA.

Download full-text PDF

Source
http://dx.doi.org/10.1530/EOR-22-0088DOI Listing

Publication Analysis

Top Keywords

dna methylation
36
dna
10
methylation
10
methylation influence
8
influence pathogenesis
8
pathogenesis osteoarthritis
8
gene-specific studies
8
genome-wide methylation
8
changes dna
8
pathogenesis
4

Similar Publications

Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.

View Article and Find Full Text PDF

DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.

View Article and Find Full Text PDF

The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.

View Article and Find Full Text PDF

Neuroendocrine tumors (NET) of the lung constitute a rare entity of primary lung malignancies that often exhibit an indolent clinical course. Epigenetics-related differences have been described previously for lung NET, but the clinical significance remains unclear. In this study, we performed genome-wide methylation analysis using the Infinium MethylationEPIC BeadChip technology on FFPE tissues from lung NET treated at two academic centers.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) TINCR has been shown to play a crucial regulatory role in various tumors. However, its specific mechanism of action in cutaneous squamous cell carcinoma (CSCC) remains unclear. This study aimed to explore the role of lncRNA TINCR in CSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!