Post-weaning diarrhea (PWD) is associated predominantly with enterotoxigenic (ETEC) and continuously causes significant economic losses to swine producers worldwide. Currently, there are no effective countermeasures against this significant swine disease. Challenges persist in developing vaccines against PWD since ETEC strains produce heterogeneous virulence factors, including F4 (K88) and F18 fimbria and heat-labile toxin (LT), heat-stable toxin type I (STa), heat-stable toxin II (STb), and Shiga toxin type 2e (Stx2e, also causes edema disease). An effective PWD vaccine would induce broadly protective immunity, ideally against two fimbriae and four toxins. In this study, by applying a novel epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, we created a monomeric polyvalent fimbria-toxin protein (fimbria-toxin MEFA) and a holotoxin-structured protein to target PWD virulence determinants (F4 and F18 fimbriae and LT, STa, STb, and Stx2e toxins) and developed a two-component multivalent PWD vaccine candidate, PWDVax. We further applied a heterologous prime-boost immunization strategy and assessed vaccine protection against F18 ETEC-associated PWD. Piglets, after being primed intramuscularly with a fimbria-toxin MEFA monomer protein and boosted orally with live bacteria producing GM-binding holotoxin-structured fimbria-toxin MEFA, developed IgG and secretory IgA responses to the target fimbriae and toxins. Challenged with an F18ac ETEC strain, the immunized piglets were protected against watery diarrhea (87.5%) or any diarrhea (66.7%). These data indicated that PWDVax protects against F18 ETEC-associated PWD and can become an effective PWD vaccine. The two-component vaccine and heterologous prime-boost immunization strategy may be instructive for developing neonatal vaccines in general.IMPORTANCEEnterotoxigenic (ETEC)-associated post-weaning diarrhea (PWD) is a global swine disease, remains a major threat to pig health and well-being, and causes significant economic losses. Currently, there are no effective vaccines available against this disease because of challenges including heterogeneity among ETEC strains (or virulence factors) and difficulties in inducing protective immunity against some key virulence determinants. PWDVax, a two-component PWD vaccine candidate, unprecedentedly targeted two ETEC fimbriae (F4 and F18) and four toxins (LT, STa, STb, and Stx2e), the virulence factors associated with nearly all PWD clinical cases. Under a heterologous prime-boost immunization schedule, it induced broad systemic and mucosal antigen-specific antibodies but also protected weaned piglets against F18 ETEC diarrhea. This makes PWDVax potentially an effective vaccine to protect against PWD, particularly the current F18 ETEC-associated severe PWD outbreaks in the United States. Additionally, the two-component vaccine and heterologous prime-boost immunization strategy may also facilitate the development of effective neonatal vaccines for humans.

Download full-text PDF

Source
http://dx.doi.org/10.1128/iai.00406-24DOI Listing

Publication Analysis

Top Keywords

heterologous prime-boost
20
prime-boost immunization
20
pwd vaccine
16
pwd
13
two-component vaccine
12
vaccine candidate
12
post-weaning diarrhea
12
virulence factors
12
fimbria-toxin mefa
12
immunization strategy
12

Similar Publications

Human clinical trials have reported immunological outcomes can differ between ipsilateral (same side) and contralateral (alternate sides) prime-boost vaccination. However, our mechanistic understanding of how keeping or shifting the anatomical sites of immunization impacts the resultant germinal centers (GCs) and antibody responses is limited. Here, we use an adjuvanted SARS-CoV-2 spike vaccine to dissect GC dynamics in draining lymph nodes and serological outcomes following ipsilateral or contralateral prime-boost vaccination in C57BL/6 mice.

View Article and Find Full Text PDF

Post-weaning diarrhea (PWD) is associated predominantly with enterotoxigenic (ETEC) and continuously causes significant economic losses to swine producers worldwide. Currently, there are no effective countermeasures against this significant swine disease. Challenges persist in developing vaccines against PWD since ETEC strains produce heterogeneous virulence factors, including F4 (K88) and F18 fimbria and heat-labile toxin (LT), heat-stable toxin type I (STa), heat-stable toxin II (STb), and Shiga toxin type 2e (Stx2e, also causes edema disease).

View Article and Find Full Text PDF

Human cytomegalovirus glycoprotein B (gB) emerges as a viable candidate for eliciting neutralizing antibodies. This research specifically focused on exploring the immune reaction prompted by the nonglycosylated variant of the gB, with a comprehensive assessment of humoral immunity in mice. The gB coding sequence was optimized and expressed in pET-15b.

View Article and Find Full Text PDF

mRNA vaccine has become a promising technology platform for rabies prevention. This study explores the roles of different structural domains of rabies virus glycoprotein (RABV-G) and heterologous prime-boost strategies for enhanced immune responses and protection. The results suggested that mRNA vaccines encoding full-length RABV-G (RABV-Full) and RABV-R333Q induced strong immune responses and provided full protection against rabies, while mRNA vaccines encoding ectodomain/transmembrane domain (RABV-TE) and ectodomain (RABV-E) were less effective.

View Article and Find Full Text PDF

Introduction: () is the causative agent of tuberculosis (TB), a disease with a severe global burden. The intractability of has prevented the identification of clear correlates of protection against TB and hindered the development of novel TB vaccines that are urgently required. Lipid nanoparticle (LNP)-formulated mRNA is a highly promising vaccine platform that has yet to be thoroughly applied to TB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!