The reduced form of nicotinamide adenine dinucleotide, commonly known as NADH, is an essential coenzyme existing in living organisms. Due to its involvement in various biological process, fluorescence imaging of intracellular NADH levels in different pathological conditions has emerged as an interesting area of research. We report here the exploration of a fluorescent probe, MQ-CN-BTZ, as a dual-channel NADH imaging agent (green and red channels) for cellular systems. Interestingly, depending on the ratio between the probe and NADH concentration in the solution phase, the probe showed emission at ∼529 nm and ∼656 nm when excited at 475 nm. It should be noted that the probe showed a very large Stokes shift of ∼180 nm with respect to the longer-wavelength emission with a good fluorescence response towards NADH. In general, such a large Stokes shift is highly beneficial for imaging applications, largely due to the better separation between the emission and excitation spectra and reduced spectral overlap. Finally, the probe was utilized to image a glycolysis pathway event by employing 3-bromopyruvic acid (3-BrPA) as a glycolytic inhibitor that significantly inhibits the activity of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is involved in a crucial step of glycolysis. As the depletion of the NADH levels corresponds to the inactivity of GADPH upon treatment with the inhibitor, we attempted to image the modulation of the NADH concentration in the cellular system in the presence of the inhibitor 3-BrPA, indicating the importance of the glycolysis step in elevating NADH levels. Overall, the present study attempts to demonstrate the importance of a molecular probe for fluorescence imaging of intracellular NADH in the presence of a glycolytic inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ob01866dDOI Listing

Publication Analysis

Top Keywords

nadh levels
16
glycolytic inhibitor
12
nadh
10
molecular probe
8
cellular system
8
fluorescence imaging
8
imaging intracellular
8
intracellular nadh
8
nadh concentration
8
large stokes
8

Similar Publications

The reduced form of nicotinamide adenine dinucleotide, commonly known as NADH, is an essential coenzyme existing in living organisms. Due to its involvement in various biological process, fluorescence imaging of intracellular NADH levels in different pathological conditions has emerged as an interesting area of research. We report here the exploration of a fluorescent probe, MQ-CN-BTZ, as a dual-channel NADH imaging agent (green and red channels) for cellular systems.

View Article and Find Full Text PDF

Cytoprotective Action of Sodium Fumarate in an Model of Hypoxia Using Sodium Dithionite.

Sovrem Tekhnologii Med

March 2025

DSc, Head of the Laboratory of Cell Physiology and Pathology, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia; Professor; UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.

Unlabelled: Hypoxia is a part of many pathological and some physiological processes. It also occurs as a result of surgical techniques associated with limiting the blood supply to the operated organs and tissues. Hypoxia leads to a significant decrease in the ability of cells to implement energy-dependent processes due to a reduced contribution of mitochondria to the synthesis of adenosine triphosphate (ATP).

View Article and Find Full Text PDF

Spectroscopic Study of Methylene Blue Interaction with Coenzymes and its Effect on Tumor Metabolism.

Sovrem Tekhnologii Med

March 2025

Junior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia.

Unlabelled: is to study the interaction of methylene blue (MB) with NADH, FADH coenzymes and lactate, and to evaluate a long-term effect of its intravenous or oral introduction on tumor metabolism .

Materials And Methods: The MB interaction with NADH, FADH coenzymes and lactate was studied using absorption spectrophotometry. A long-term effect of MB on tumor metabolism was investigated on a mice model of Ehrlich carcinoma.

View Article and Find Full Text PDF

The incidence of diabetes-related cognitive dysfunction is on the rise, yet clinical interventions to prevent this condition remain limited. Apelin-13, an endogenous peptide known for its positive inotropic and vasoactive properties, has been shown to exert diverse effects across various tissues and cell types. However, its potential protective role in diabetes-associated cognitive decline (DACD) remains poorly understood.

View Article and Find Full Text PDF

Targeting NAD + biosynthesis suppresses TGF-β1/Smads/RAB26 axis and potentiates cisplatin cytotoxicity in non-small cell lung cancer brain metastasis.

Acta Neuropathol Commun

March 2025

Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, People's Republic of China.

Nicotinamide adenine dinucleotide (NAD) plays an important role in tumor progression, but its role in non-small cell lung cancer with brain metastasis (NSCLC BM) remains unclear. Herein, we investigated NAD biosynthesis targeting as a new therapeutic strategy for NSCLC BM. Therapeutic activity of nicotinamide phosphoribosyl transferase (NAMPT) inhibitors was evaluated in mouse models of NSCLC BM and using various assays such as NAD quantitation, cell viability, and apoptosis assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!