One of the widely used techniques for producing recombinant adeno-associated virus serotype 2 (rAAV2) particles, as viral vectors for gene therapy applications, is the triple transient (TT) transfection of human embryonic kidney 293 (HEK293) cells. It is desirable to optimize this transfection process for more efficient manufacturing of rAAV viral vectors for gene therapy purposes. We examined the application of dimethyl sulfoxide (DMSO) as an additive to this transfection technique to improve the expression yield of rAAV2 particles with HEK293 cells in adherent and suspension cell culture modalities. This assistance by DMSO should increase the trafficking of plasmid DNA (pDNA) through the cell membrane, and thus, increase the viral titer of rAAV2 full capsids at the time of harvesting the cell culture. The study demonstrated that DMSO as an additive for the TT transfection process led to an 8.2-fold increase in the expression yield of full AAV2 capsids using HEK293 cells in adherent cell culture modality, and also led to a 4.0-fold increase in the expression yield of full AAV2 capsids using HEK293 cells in suspension cell culture modality. There are no reported studies on the application of DMSO as an additive to the TT transfection process of HEK293 cells for the production of AAV particles. This is a novel, simple, and inexpensive method to improve the yield of rAAV2 full capsids with the TT transfection process of HEK293 cells, using a well-known cryoprotectant agent (CPA), as an additive to this transfection process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.70017DOI Listing

Publication Analysis

Top Keywords

hek293 cells
28
transfection process
24
expression yield
16
dmso additive
16
additive transfection
16
cell culture
16
process hek293
12
recombinant adeno-associated
8
adeno-associated virus
8
virus serotype
8

Similar Publications

Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation.

View Article and Find Full Text PDF

Characterization of diverse Cas9 orthologs for genome and epigenome editing.

Proc Natl Acad Sci U S A

March 2025

Department of Biomedical Engineering, and Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708.

CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s.

View Article and Find Full Text PDF

The DNase TREX1 is a substrate of the intramembrane protease SPP with implications for disease pathogenesis.

Cell Mol Life Sci

March 2025

Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.

Signal peptide peptidase (SPP) is an ER-resident aspartyl intramembrane protease cleaving proteins within type II-oriented transmembrane segments. Here, we identified the tail-anchored protein Three prime repair exonuclease 1 (TREX1) as a novel substrate of SPP. Based on its DNase activity, TREX1 removes cytosolic DNA acting as a negative regulator of the DNA-sensing cGAS/STING pathway.

View Article and Find Full Text PDF

Defining the Protein Phosphatase 2A (PP2A) Subcomplexes That Regulate FoxO Transcription Factor Localization.

Cells

February 2025

Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, TX 78229, USA.

The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear.

View Article and Find Full Text PDF

Transcriptome-wide mapping of N3-methylcytidine modification at single-base resolution.

Nucleic Acids Res

February 2025

Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.

3-Methylcytidine (m3C), a prevalent modification of transfer RNAs (tRNAs), was recently identified in eukaryotic messenger RNAs (mRNAs). However, its precise distribution and formation mechanisms in mRNAs remain elusive. Here, we develop a novel approach, m3C immunoprecipitation and sequencing (m3C-IP-seq), utilizing antibody enrichment to profile the m3C methylome at single-nucleotide resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!