The human peptidyl-prolyl-cis/trans isomerases (PPIases), Parvulin 14 and Parvulin 17, accelerate the cis/trans isomerization of Xaa-Pro moieties within protein sequences. By modulating the respective binding interfaces of their target proteins, they play a crucial role in determining the fate of their substrates within the cell. Although both enzymes share the same amino acid sequence, they have different cellular functions. This difference is due to a 25 residue N-terminal extension present in Par17 but absent in Par14. Using activity assays, NMR spectroscopy, and mass spectrometry, we demonstrate that the N-terminal extension of Par17 determines substrate selectivity by an intramolecular allosteric mechanism and exhibits a target-binding motif that interacts with actin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.26807DOI Listing

Publication Analysis

Top Keywords

substrate selectivity
8
n-terminal extension
8
extension par17
8
actin-binding prolyl-isomerase
4
prolyl-isomerase par17
4
par17 sustains
4
sustains substrate
4
selectivity interdomain
4
interdomain allostery
4
allostery human
4

Similar Publications

Coordination cages with specific properties and functionalities are utilized as reaction vessels for the desired chemical transformation of substrates. The symmetry and inherent cavity of coordination cages can influence the host-guest interactions and the reaction outcome in their confined space. However, the impact of the cage shape on different transformations remains unclear.

View Article and Find Full Text PDF

FAP-catalyzed in situ self-assembly of magnetic resonance imaging probe for early and precise staging of liver fibrosis.

Sci Adv

March 2025

Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China.

Liver fibrosis is an inevitable stage in the progression of most chronic liver diseases. Early diagnosis and treatment of liver fibrosis are crucial for effectively managing chronic liver conditions. However, there lacks a noninvasive and sensitive imaging method capable of early assessing fibrosis activity.

View Article and Find Full Text PDF

Molecular Insights into the Rhamnolipid-Promoted Enzymatic Performance on Removing Phenolic Pollutants.

Langmuir

March 2025

Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.

Horseradish peroxidase (HRP) is a metalloenzyme widely used in various biochemical applications but is susceptible to activity loss and instability under suboptimal conditions. In this study, rhamnolipid (RL) was, for the first time, employed as an additive to enhance the catalytic performance of HRP, including in a dual-enzyme cascade system with glucose oxidase (GOx). We carried out catalytic experiments on phenol degradation and showed that protecting HRP from deactivation is critical in maintaining the high catalytic effect in the dual-enzyme cascade.

View Article and Find Full Text PDF

Indirect Anti-Markovnikov Hydrofunctionalization of Terminal Alkenes via an Alkenyl Thianthrenium Intermediate.

Angew Chem Int Ed Engl

March 2025

Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont, Institute of Organic Chemistry, 2 Magyar tudósok körútja, 1117, Budapest, HUNGARY.

The anti-Markovnikov hydrofunctionalization of terminal, unactivated olefins is an evergreen synthetic challenge in organic chemistry. Several direct and indirect anti-Markovnikov methods have been developed, ranging from the classical hydroboration/oxidation protocol to state-of-the-art photoredox catalytic, transition metal complex-catalyzed and enzymatic procedures. Despite the ever-expanding suite of synthetic capabilities, these methods still have limited generality in their substrate scope, especially with nucleophiles.

View Article and Find Full Text PDF

The selective synthesis of different products from a substrate employing a single catalyst by altering the reaction conditions is challenging. Herein, easy-to-synthesize and cheap CuO NPs catalyzed chemodivergent transfer hydrogenation (TH) of azoarenes to hydrazoarene and aniline derivatives using ammonia borane (AB) under mild condition is disclosed. The practical applicability of the protocol was demonstrated by gram-scale synthesis of hydrazo and aniline derivatives as well as by the reduction of few commercially used dyes such as methyl red, sudan I, sudan III and solvent yellow 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!