Introduction: Thiamine-responsive megaloblastic anaemia syndrome (TRMA) is a rare genetic disease caused by mutations in the SLC19A2 gene that encodes thiamine transporter 1 (THTR-1). The common manifestations are diabetes, anaemia, and deafness. The pathogenic mechanism has not yet been clarified.
Material And Methods: Rat pancreatic islet tumour cells INS.1 were used to construct cell lines stably overexpressing wild-type SLC19A2 and SLC19A2 (c.1409insT) mutants. The mRNA and protein expressions of THTR-1 and endoplasmic reticulum stress (ERS)-associated factors were detected by real-time fluorescence quantitative polymerase chain reaction (PCR) and western blot methods, respectively. Flow cytometry and cell counting kit-8 were used to analyse the effects of SLC19A2 (c.1409insT) mutation on cell apoptosis and proliferation, respectively. 4-Phenylbutyric acid (4-PBA), an ERS inhibitor, was administered to SLC19A2 (c.1409insT)-mutated INS.1 cells, and then the mRNA and protein expressions of ERS-related factors in cells were detected.
Results: Mutations in the SLC19A2 (c.1409insT) promote apoptosis and inhibit cell proliferation, thereby upregulating the mRNA and protein levels of ERS-associated factors glucose-regulated protein 78, protein kinase R-like endoplasmic reticulum kinase, C/EBP homologous protein, and activating transcription factor 4. 4-PBA could inhibit ERS caused by SLC19A2 (c.1409insT) mutations, downregulate mRNA and protein expression levels of GRP78, CHOP, and phosphorylated eukaryotic initiation factor 2α, and protect pancreatic islet β-cells.
Conclusion: THTR-1 deficiency triggers diabetes in TRMA patients through ERS, and 4-PBA protects pancreatic islet β-cells by inhibiting ERS, which provides new ideas and intervention targets for the prevention and treatment of TRMA and diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5603/ep.101404 | DOI Listing |
Endokrynol Pol
March 2025
Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China.
Introduction: Thiamine-responsive megaloblastic anaemia syndrome (TRMA) is a rare genetic disease caused by mutations in the SLC19A2 gene that encodes thiamine transporter 1 (THTR-1). The common manifestations are diabetes, anaemia, and deafness. The pathogenic mechanism has not yet been clarified.
View Article and Find Full Text PDFCommun Biol
February 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
The Central Plains Han Chinese (CPHC) is the typical agricultural population of East Asia. Investigating the genome of the CPHC is crucial to understanding the genetic structure and adaptation of the modern humans in East Asia. Here, we perform whole genome sequencing of 492 CPHC individuals and obtained 22.
View Article and Find Full Text PDFMol Cell Endocrinol
April 2025
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary. Electronic address:
Brown and beige adipocytes express uncoupling protein 1 (UCP1), which is located in the inner mitochondrial membrane and facilitates the dissipation of excess energy as heat. The activation of thermogenic adipocytes is a potential therapeutic target for treating type 2 diabetes mellitus, obesity, and related co-morbidities. Therefore, identifying novel approaches to stimulate the function of these adipocytes is crucial for advancing therapeutic strategies.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and progressive joint destruction. Neutrophil extracellular traps (NETs), a microreticular structure formed after neutrophil death, have recently been implicated in RA pathogenesis and pathological mechanisms. However, the underlying molecular mechanisms and key genes involved in NET formation in RA remain largely unknown.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China.
Adult nephrotic syndrome is primarily caused by membranous nephropathy (MN), with idiopathic membranous nephropathy (IMN) being a prominent subtype. The onset of phospholipase A2 receptor (PLA2R1)-associated IMN is critically linked to M-type PLA2R1 exposure, yet the mechanism underlying glomerular injury remains unclear. In this study, membranous nephropathy datasets (GSE115857, GSE200828) were retrieved from GEO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!