Intramolecular subtleties in indole azo dyes revealed by multidimensional potential energy surfaces.

Phys Chem Chem Phys

Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, USA.

Published: March 2025

Despite their wide use as molecular photoswitches, the mechanistic photophysics of azo dyes are complex and nuanced, and therefore under-explored. To understand the complex electronic interactions that govern the photoisomerization and thermal reversion of two phenyl-azo-indole dyes that differ by R-sterics near the azo bond, potential energy surfaces that combine the dihedral rotation of the azo bond and the aryl inversion on each side of the azo bond were calculated with density functional theory and time-dependent density functional theory. These multidimensional singlet surfaces provide insights into the correlated rotation and inversion pathways allowing for detailed understanding of both photoisomerization, governed by the excited-state surfaces, and thermal reversion, governed by the ground-state surface, mechanisms to be developed. Large plateaus on the S surface arise from strong intramolecular interactions between a phenyl substituent and one of the aryl groups, extending the experimental photoisomerization lifetime of the dye with a phenyl R-group by two times over the unsubstituted dye. While one might expect the sterics of the larger phenyl substituent to lead to a slower thermal reversion rate, this was not the case. The thermally accessible -stable rotamers of the -isomer leads to more reversion pathways and a longer -lifetime for the unsubstituted dye, by a factor of four in the experiment. Careful computational mapping of multidimensional potential energy surfaces allows accurate mechanistic understanding for systems with interdependent degrees of freedom between meta-stable states.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cp00110bDOI Listing

Publication Analysis

Top Keywords

potential energy
12
energy surfaces
12
thermal reversion
12
azo bond
12
azo dyes
8
multidimensional potential
8
density functional
8
functional theory
8
phenyl substituent
8
unsubstituted dye
8

Similar Publications

Exploring the Anion Site Disorder Kinetics in Lithium Argyrodites.

J Am Chem Soc

March 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 28/30, Münster D-48149, Germany.

Lithium argyrodites LiPS ( = Cl, Br, I) are a promising class of solid-state electrolytes with the potential to achieve high conductivities (>10 mS·cm) necessary for use in solid-state batteries. Previous research has shown that structural factors, in particular, site disorder between the sulfide and halide anions, can impact the ionic conductivity of lithium argyrodites. One current hypothesis for this correlation between anion site disorder and ionic transport is a connection to the lithium-ion substructure.

View Article and Find Full Text PDF

Design, Synthesis, and Nematicidal Activity of Novel Amide Derivatives Containing an 1,2,4/1,3,4-Oxadiazole Moiety against .

J Agric Food Chem

March 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

To discover novel structural nematicides, 79 amide compounds containing 1,2,4/1,3,4-oxadiazole moiety were designed, synthesized, and evaluated for nematicidal efficacy against second-stage juveniles of (). Notably, some compounds exhibited superior nematicidal efficacy, for example, the LC values of compounds , , , , , , , and were 7.4, 31.

View Article and Find Full Text PDF

Purpose: This study aimed to examine the differential expression profiles of plasma metabolites in rat models of post-traumatic osteoarthritis (PTOA) and elucidate the roles of metabolites and their pathways in the progression of PTOA using bioinformatics analysis.

Method: Plasma samples were collected from 24 SD female rats to model PTOA, and metabolomic assays were conducted. The samples were divided into three groups: the surgically induced mild PTOA group (Group A: 3 weeks postoperative using the modified Hulth model; age 2 months), the surgically induced severe PTOA group (Group B: 5 weeks postoperative using the modified Hulth model; age 2 months), and the normal control group (Group C: healthy rats aged 2 months).

View Article and Find Full Text PDF

Rechargeable magnesium batteries (RMBs) exhibit significant potential in large-scale energy storage due to their features of high volumetric capacity, resistance to dendrite formation, and abundant magnesium resources. However, the high polarity of divalent Mg2+ ions results in sluggish diffusion kinetics in conventional inorganic cathode materials, adversely affecting reversible capacity and rate performance. Organic materials such as pyrene-4,5,9,10-tetrone (PTO) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), achieve rapid and reversible intercalation of magnesium ions through carbonyl enolization, but these materials are challenged by high cost, complex preparation, and poor environmental friendliness.

View Article and Find Full Text PDF

The estimation of accurate free energies for antibiotic permeation via the bacterial outer-membrane porins has proven to be challenging. Atomistic simulations of the process suffer from sampling issues that are typical of systems with complex and slow dynamics, even with the application of advanced sampling methods. Ultimately, the objective is to obtain accurate potential of mean force (PMF) for a large set of antibiotics and to predict permeation rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!