This study investigates the anticholinesterase (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE]) and carbonic anhydrase (CAI and CAII) inhibitory activities of carnosic acid and its natural derivatives, including carnosol, rosmanol, 7-methoxy-rosmanol, 12-methoxy-carnosic acid, and isorosmanol. Among the tested compounds, rosmanol demonstrated exceptional potency, with IC values of 0.73 nM for AChE and 0.75 nM for BChE, significantly outperforming tacrine. Rosmanol also exhibited remarkable inhibition of CA I (IC = 0.21 nM), surpassing acetazolamide by over 450-fold, and moderate inhibition of CAII. Molecular docking and molecular mechanics generalized born surface area (MM-GBSA) studies revealed strong binding affinities for rosmanol, with docking scores of -11.757 kcal/mol (AChE) and -11.465 kcal/mol (BChE). The MM-GBSA binding free energy calculations further confirmed stable interactions for CA I (-63.24 kcal/mol) and AChE (-60.09 kcal/mol). Molecular dynamics simulations over 50 ns showed stable enzyme-ligand complexes, particularly for AChE and BChE (root mean square deviation ~1.5 Å), with key residues identified as crucial for stabilization. Other derivatives also displayed significant inhibitory activities, suggesting their potential as secondary leads. The ADMET analysis showed favorable pharmacokinetics and rosmanol emerged as a promising candidate. This comprehensive study highlights rosmanol as a multitarget therapeutic agent with potent anticholinesterase and CA inhibitory properties, offering promise for treating neurodegenerative and metabolic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.202400909 | DOI Listing |
J Immunol
January 2025
Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
Natural killer (NK) cells are a promising approach for cellular cancer immunotherapy and are being investigated to treat patients with multiple myeloma (MM). We found that MM patient blood NK cell frequencies were normal with increased activating receptors and cytotoxic granules, without evidence of functional exhaustion. Despite this activated state, MM target cells were resistant to conventional NK cells by unclear mechanisms.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Mast cells (MCs) play a central role in allergic immune responses. MC activation is regulated by several inhibitory immunoreceptors. The CD300 family members CD300a and CD300lf recognize phospholipid ligands and inhibit the FcεRI-mediated activating signal in MCs.
View Article and Find Full Text PDFJ Immunol
February 2025
Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
In naïve mice, a fraction of CD8 T cells displaying high affinity for self-MHC peptide complexes develop into virtual memory T (TVM) cells. Due to self-reactivity, TVM cells are exposed to persistent antigenic stimulation, a condition known to induce T cell exhaustion. However, TVM cells do not exhibit characteristics similar to exhausted CD8 T (TEX) cells.
View Article and Find Full Text PDFAnal Chem
March 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
Biological aggregates play a crucial role in the pathogenesis of thrombotic diseases, especially thrombin-induced biological aggregates. Therefore, the efficient discovery of thrombin inhibitors is of great significance for the prevention and treatment of thrombotic diseases. In this study, the aggregation precursor protein fluorescent probe was successfully prepared for monitoring the production of biological aggregates induced by thrombin.
View Article and Find Full Text PDFJ Appl Oral Sci
March 2025
Universidade Federal do Piauí, Programa de Pós-Graduação em Odontologia (PPGO), Teresina, Piauí, Brasil.
Background: This article is derived from Irisvaldo Lima Guedes's Master's dissertation and is available at the address: https://sigaa.ufpi.br/sigaa/public/programa/noticias_desc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!