A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exceptional Near-Infrared II Organic Small Molecule Nanoagent for Photoacoustic/Photothermal Imaging-Guided Highly Efficient Therapy in Cancer. | LitMetric

Exceptional Near-Infrared II Organic Small Molecule Nanoagent for Photoacoustic/Photothermal Imaging-Guided Highly Efficient Therapy in Cancer.

Bioconjug Chem

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.

Published: March 2025

Near-infrared II (NIR-II) photoacoustic (PA)/photothermal imaging-guided tumor therapy holds great promise in precision medicine for cancer treatment. This work reports on the synthesis and application of an organic small molecule nanoagent that has exceptional PA and photothermal properties in the near-infrared region. BCy-TPE was constructed by linking an NIR-II absorbing cyanine dye BCy-Cl with a twisted tetraphenylethene unit. The synthesized BCy-TPE exhibited an intense absorption peak at 1032 nm. After encapsulation into water-dispersible nanoparticles (NPs), BCy-TPE NPs exhibited two absorption peaks at 880 and 1046 nm. Notably, under 1064 nm laser excitation, BCy-TPE NPs deliver a remarkable photothermal conversion efficiency of 92%, together with superior biocompatibility, photostability, and PA/photothermal imaging capability. Moreover, after intravenous administration of BCy-TPE NPs into 4T1 tumor-bearing mice and treatment with safe-intensity (1.0 W cm and 1064 nm) laser irradiation, tumor temperature increased rapidly to 52 °C within 1 min and tumors are completely ablated after a single photothermal therapy treatment. Overall, this work offers a novel strategy to develop superb NIR-II photothermal agents for PA/photothermal imaging-guided highly efficient therapy in cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.5c00058DOI Listing

Publication Analysis

Top Keywords

bcy-tpe nps
12
organic small
8
small molecule
8
molecule nanoagent
8
imaging-guided highly
8
highly efficient
8
efficient therapy
8
therapy cancer
8
pa/photothermal imaging-guided
8
treatment work
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!