Mechanistic insights into the stereocontrolling non-covalent π interactions in Pd-catalyzed redox-relay Heck arylation reaction.

Chem Commun (Camb)

Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Published: March 2025

The mechanism and origin of enantioselectivity of palladium-catalyzed redox-relay Heck arylation of 1,1-disubstituted homoallylic alcohols were investigated computationally. The computed mechanism consists of an initial migratory insertion, followed by a β-hydride elimination, and a subsequent re-insertion/elimination process to yield an enol intermediate, which tautomerizes to the more stable carbonyl product. Results from DFT calculations suggest that the key enantiodetermining step is the reinsertion of an alkene intermediate into the Pd-H bond, but not the initial migratory insertion of the substrate into the Pd-Aryl species. By comparing two chiral pyridine oxazoline ligands with a focus on the phenyl -butyl substituent effects, a plethora of attractive non-covalent π interactions, including CH-π interaction, lone pair-π interaction and T-shaped π-π interaction, are identified to play a key role in enabling high enantioselectivity of this reaction. This work provides mechanistic insights into the comprehensive understanding of this catalytic cascade, and highlights the significant role played by non-covalent π interactions in its enantiocontrol.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc00650cDOI Listing

Publication Analysis

Top Keywords

non-covalent interactions
12
mechanistic insights
8
redox-relay heck
8
heck arylation
8
initial migratory
8
migratory insertion
8
insights stereocontrolling
4
stereocontrolling non-covalent
4
interactions pd-catalyzed
4
pd-catalyzed redox-relay
4

Similar Publications

Biomolecule-engineered metal-organic frameworks (Bio-MOFs) are designed by incorporating biomolecules into or onto MOFs through covalent and non-covalent interactions. These composite frameworks exhibit unique catalytic and biological activities, making them highly suitable for various biocatalytic applications. In this review, we highlight recent advances in the material design, bioengineering methods, structural and functional regulation techniques, and biocatalytic applications of Bio-MOFs.

View Article and Find Full Text PDF

Mechanistic insights into the stereocontrolling non-covalent π interactions in Pd-catalyzed redox-relay Heck arylation reaction.

Chem Commun (Camb)

March 2025

Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

The mechanism and origin of enantioselectivity of palladium-catalyzed redox-relay Heck arylation of 1,1-disubstituted homoallylic alcohols were investigated computationally. The computed mechanism consists of an initial migratory insertion, followed by a β-hydride elimination, and a subsequent re-insertion/elimination process to yield an enol intermediate, which tautomerizes to the more stable carbonyl product. Results from DFT calculations suggest that the key enantiodetermining step is the reinsertion of an alkene intermediate into the Pd-H bond, but not the initial migratory insertion of the substrate into the Pd-Aryl species.

View Article and Find Full Text PDF

The asymmetric unit of the title salt, CHFNSe·Cl, contains one planar 4-fluoro-benzo[][1,2,5]selena-diazol-1-ium mol-ecular cation and a chloride anion. In the crystal, inter-molecular N-H⋯Cl hydrogen bonds link the 4-fluoro-benzo[][1,2,5]selena-diazol-1-ium mol-ecules, which are arranged in parallel layers along (104), to the chloride anions. The cationic layers, in turn, are stacked along [001].

View Article and Find Full Text PDF

The title compound, CHClFN, was synthesized from 3-(tri-fluoro-meth-yl)-1-pyrazole and chloro-(4-chloro-phen-yl)methyl-ene)di-benzene. The structure features intra-molecular (Ph)C-H⋯N and inter-molecular (Ph)C-H⋯F hydrogen bonds, as well as C-H⋯π-ring inter-actions between the phenyl and pyrazole rings.

View Article and Find Full Text PDF

This study investigates the non-covalent interactions between both the free and tautomeric forms of 5-fluorouracil (5-FU) and poly(lactic-co-glycolic acid) (PLGA) nanoparticles through density functional dispersion correction (DFT-D) at the B3LYP-D level in a dichloromethane (DCM) and water environments. Our results indicate that the non-covalent interactions formed between the carbonyl and amide groups of the free form of 5-FU and the carboxyl group of PLGA facilitate a rapid initial release of the drug, aligning with experimental findings. The calculated binding energies for 5-FU in its keto-enol (-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!