The nucleosome serves as the fundamental unit of chromatin organization, with electrostatic interactions acting as the driving forces in the folding of nucleosomes into chromatin. Perturbations around physiological pH conditions can lead to changes in the protonation states of titratable histone residues, impacting nucleosome surface electrostatic potentials and interactions. However, the effects of proton uptake or release of histone ionizable groups on nucleosome-partner protein interactions and higher-order chromatin structures remain largely unexplored. Here, we conducted comprehensive analyses of histone titratable residue pKa values in various nucleosome contexts, utilizing 96 experimentally determined complex structures. We revealed that pH-induced changes in histone residue protonation states modulated nucleosome surface electrostatic potentials and significantly influenced nucleosome-partner protein interactions. Furthermore, we observed that proton uptake or release often accompanied nucleosome-partner protein interactions, facilitating their binding processes. In addition, our findings suggest that alterations in histone protonation can also regulate nucleosome self-association, thereby modulating the organization and dynamics of higher-order chromatin structure. This study advances our understanding of nucleosome-chromatin factor interactions and how chromatin organization is regulated at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0252788DOI Listing

Publication Analysis

Top Keywords

nucleosome-partner protein
12
protein interactions
12
electrostatic interactions
8
histone ionizable
8
chromatin organization
8
protonation states
8
nucleosome surface
8
surface electrostatic
8
electrostatic potentials
8
proton uptake
8

Similar Publications

The nucleosome serves as the fundamental unit of chromatin organization, with electrostatic interactions acting as the driving forces in the folding of nucleosomes into chromatin. Perturbations around physiological pH conditions can lead to changes in the protonation states of titratable histone residues, impacting nucleosome surface electrostatic potentials and interactions. However, the effects of proton uptake or release of histone ionizable groups on nucleosome-partner protein interactions and higher-order chromatin structures remain largely unexplored.

View Article and Find Full Text PDF

Infection by retroviruses as HIV-1 requires the stable integration of their genome into the host cells. This process needs the formation of integrase (IN)-viral DNA complexes, called intasomes, and their interaction with the target DNA wrapped around nucleosomes within cell chromatin. To provide new tools to analyze this association and select drugs, we applied the AlphaLISA technology to the complex formed between the prototype foamy virus (PFV) intasome and nucleosome reconstituted on 601 Widom sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!