A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metagenomic Insights in Antimicrobial Resistance Threats in Sludge from Aerobic and Anaerobic Membrane Bioreactors. | LitMetric

Metagenomic Insights in Antimicrobial Resistance Threats in Sludge from Aerobic and Anaerobic Membrane Bioreactors.

Environ Sci Technol

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Published: March 2025

Sludge is a biohazardous solid waste that is produced during wastewater treatment. It contains antibiotic resistance genes (ARGs) that pose significant antimicrobial resistance (AMR) threats. Herein, aerobic and anaerobic membrane bioreactors (AeMBRs and AnMBRs, respectively) were compared in terms of the volume of waste sludge generated by them, the presence of ARGs in the sludge, and the potential for horizontal gene transfer (HGT) events using metagenomics to determine which treatment process can better address AMR concerns associated with the generation of waste sludge. The estimated abundance of ARGs in the suspended sludge generated by the AnMBR per treated volume is, on average, 5-55 times lower than that of sludge generated by the AeMBR. Additionally, the ratio of potential HGT in the two independent runs was lower in the anaerobic sludge (0.6 and 0.9) compared with that in the aerobic sludge (2.4 and 1.6). The AnMBR sludge exhibited reduced HGT of ARGs involving potential opportunistic pathogens (0.09) compared with the AeMBR sludge (0.27). Conversely, the AeMBR sludge displayed higher diversity and more transfer events, encompassing genes that confer resistance to quinolones, rifamycin, multidrug, aminoglycosides, and tetracycline. A significant portion of these ARGs were transferred to sp. By contrast, the AnMBR showed a lower abundance of mobile genetic elements associated with conjugation and exhibited less favorable conditions for natural transformation. Our findings suggest that the risk of potential HGT to opportunistic pathogens is greater in the AeMBR sludge than in AnMBR sludge.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c10879DOI Listing

Publication Analysis

Top Keywords

sludge
14
sludge generated
12
aembr sludge
12
antimicrobial resistance
8
aerobic anaerobic
8
anaerobic membrane
8
membrane bioreactors
8
waste sludge
8
potential hgt
8
sludge anmbr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!