Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of self-healing mineralized hydrogels in 3D printing has demonstrated significant advantages, including enhanced printing accuracy and the ability to maintain high shape fidelity throughout the printing process. After conducting an initial optimization study, we incorporated our self-healing mineralized hydrogel into semi-solid extrusion-based 3D printing to print diclofenac-loaded oral films. The dependence of the print speed on the nature of the material was established by varying the print speed. The process of optimizing the print speed was conducted using a blank hydrogel, which involved analyzing specific parameters, such as printing accuracy and the percentage of pore area under sizing. The results demonstrated that 2 mm/sec print speed showed a higher printing accuracy of 98.13% and pore area under-sizing value of 41.31%. Interestingly, the viscosity of the hydrogel increased from 5.30 to 133 PaS upon addition of the drug. The percentage pore area under sizing also decreased from 41.31% to 11.48% as the drug loading was increased from 0% to 3% w/w. The in vitro drug release study demonstrated that the 3% w/w diclofenac sodium-loaded oral films printed at 2 mm/sec exhibited a faster release profile. Furthermore, considerable bioavailability of diclofenac sodium (DS) was achieved from the 3D-printed oral films during the in vivo study. These results can be effectively used to develop a drug delivery system that can release medications accurately and consistently, either in a targeted area or systemically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28973 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!