Fluoride is ubiquitously present in the natural environment, and its excessive levels can pose serious threats to human health and industrial production. Among various fluoride pollution control methods, adsorption is recognized for its optimal cost-effectiveness and adaptability. The mechanism of fluoride adsorption and the adsorption capacities of various modified adsorbents have been comparatively analyzed:natural minerals, biomass materials, metal oxides, and several emerging types of adsorbents, among which metal-based adsorbents show the best performance. Four modification methods to enhance the performance of adsorbents have been summarized: acid activation, thermal activation, surface functional group modification, and composite materials. Ultimately, this paper identifies the current limitations of adsorption methods for fluoride removal, including insufficient adsorption capacity and a narrow pH range of applicability. These findings are expected to offer valuable insights for the advancement of adsorbent materials research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202401108 | DOI Listing |
Adv Mater
March 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.
View Article and Find Full Text PDFChem Asian J
March 2025
Southwest Petroleum University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical engineering, CHINA.
Fluoride is ubiquitously present in the natural environment, and its excessive levels can pose serious threats to human health and industrial production. Among various fluoride pollution control methods, adsorption is recognized for its optimal cost-effectiveness and adaptability. The mechanism of fluoride adsorption and the adsorption capacities of various modified adsorbents have been comparatively analyzed:natural minerals, biomass materials, metal oxides, and several emerging types of adsorbents, among which metal-based adsorbents show the best performance.
View Article and Find Full Text PDFFEBS J
March 2025
Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil.
Membrane-active peptides are useful tools in the design of multifunctional molecules. For example, peptide chimeras may release, after proteolysis of membrane-adsorbed molecules, pharmacologically active fragments. In previous work, Chim2, an antimicrobial peptide composed of a membrane-active module, an enzymatic hydrolysis site, and an agonist moiety for type 2 formyl peptide receptors (FPR2), was conceptualized.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
School of Chemistry and Chemical Engineering, University of Jinan, 250022 Jinan, PR China. Electronic address:
Recovering bromide ions from wastewater can not only alleviate the shortage of bromine resources but also solve the problem of bromine pollution. However, there is no efficient method for selective extraction of bromide ions from bromine-containing wastewater up to now. In this paper, chitosan was acidified into a gel to extend its molecular chain, modified by quaternary ammonium salt functional groups, and then crosslinked to obtain a new adsorption material.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Environment and Natural Resources, Zhejiang University of Science and Technology, 310023, China; Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Hangzhou, 310023, PR China. Electronic address:
In this work, through sequential demethylation, amination and esterification, a novel multi-chemically modified lignin-based adsorbent (NMCL) was developed to remove lead ions (Pb) from wastewater. These modifications significantly enhanced lignin's reactivity and introduced diverse active sites, thereby improving its adsorption performances. The adsorption studies revealed that NMCL's adsorption followed the Langmuir isotherm model and Pseudo-second-order kinetics, confirming a monolayer chemical adsorption process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!