The development of small molecular dyes excitable in the second near-infrared window (NIR-II, 1000~1700 nm) is crucial for deep-tissue penetration and maximum permissible exposure in cancer photothermal theranostics. Herein, we employed a dendrimer engineering strategy to develop the boron difluoride formazanate (BDF) dye BDF-8OMe for photoacoustic imaging-mediated NIR-II photothermal therapy. BDF-8OMe, characterized by an increased molecular branching degree and extended π-conjugation, exhibited broad absorbance peaked at 905 nm, with the absorption tail extending to 1300 nm. Additionally, reorganization energy calculation, molecular dynamics simulation, and femtosecond transient absorption spectroscopy demonstrated that the multiple identical dendritic units of BDF-8OMe significantly enhanced the molecular motions, enabling the nanoparticles (NPs) to rapidly release 94.4% of the excited state energy through non-radiative decay at a rate of 11.7 ps. Under 1064 nm photoirradiation, BDF-8OMe NPs achieved a high photothermal conversion efficiency of 62.5%, facilitating NIR-II photothermal theranostics. This work highlights the potential of the dendrimer-building strategy in developing NIR-II excitable small molecular dyes for efficient photothermal theranostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202503718 | DOI Listing |
J Am Chem Soc
March 2025
Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.
View Article and Find Full Text PDFAging Dis
March 2025
Medical School of Chinese PLA, Beijing, China.
Osteoarthritis (OA) is the most common musculoskeletal disease globally and is the main reason for the chronic pain and disability in people over sixty-five worldwide. Degradation of the articular cartilage, synovial inflammation and osteophyte formation are widely acknowledged as the primary pathological manifestations of OA. OA affects more than 300 million people all over the world, bringing extremely large socioeconomic burden.
View Article and Find Full Text PDFACS Nano
March 2025
School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
Wound-infected bacterial biofilms are protected by self-secreted extracellular polymer substances (EPS), which can confer them with formidable resistance to the host's immune responses and antibiotics, and thus delays in diagnosis and treatment can cause stubborn infections and life-threatening complications. However, tailoring an integrated theranostic platform with the capability to promptly diagnose and treat wound biofilm infection still remains a challenge. Herein, a versatile erbium-doped carbon dot-encapsulated zeolitic imidazolate framework-8 (Er:CDs@ZIF-8) nanoheterojunction (C@Z nano-HJ) is tailored and incorporated into gelatin methacrylate/poly(-hydroxyethyl acrylamide) (GelMA/PHEAA)-based tough and sticky hydrogel dressing (GH-C@Z) to achieve wound biofilm infection-integrated theranostic application.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Nanjing Tech University, Institute of Advanced Materials (IAM), 5 Xinmofan Road, 210009, Nanjing, CHINA.
The development of small molecular dyes excitable in the second near-infrared window (NIR-II, 1000~1700 nm) is crucial for deep-tissue penetration and maximum permissible exposure in cancer photothermal theranostics. Herein, we employed a dendrimer engineering strategy to develop the boron difluoride formazanate (BDF) dye BDF-8OMe for photoacoustic imaging-mediated NIR-II photothermal therapy. BDF-8OMe, characterized by an increased molecular branching degree and extended π-conjugation, exhibited broad absorbance peaked at 905 nm, with the absorption tail extending to 1300 nm.
View Article and Find Full Text PDFAnal Sci
March 2025
Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan.
Metal complexes have long played a pivotal role in analytical chemistry due to their ability to detect and separate ions through the synergistic interaction between metal centers and ligands. This functionality can be further enhanced by integrating metal complexes non-covalently with various media, such as materials or separation platforms. Over the past four decades, the author has explored metal complex systems, including thiacalixarene-lanthanide(III) complexes, diradical platinum(II) complexes, and MOF-74, which exhibit a broad spectrum of functionalities spanning analytical applications to theranostics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!